Mots-clés : minimum satellite.
@article{VYURM_2018_10_2_a1,
author = {O. V. Kamozina},
title = {Minimum satellite of $\tau$-closed $n$-fold $\Omega$-foliated {Fitting} class},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {22--27},
year = {2018},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a1/}
}
TY - JOUR AU - O. V. Kamozina TI - Minimum satellite of $\tau$-closed $n$-fold $\Omega$-foliated Fitting class JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 22 EP - 27 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a1/ LA - ru ID - VYURM_2018_10_2_a1 ER -
%0 Journal Article %A O. V. Kamozina %T Minimum satellite of $\tau$-closed $n$-fold $\Omega$-foliated Fitting class %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 22-27 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a1/ %G ru %F VYURM_2018_10_2_a1
O. V. Kamozina. Minimum satellite of $\tau$-closed $n$-fold $\Omega$-foliated Fitting class. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 2, pp. 22-27. http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a1/
[1] Shemetkov L. A., Formations of Finite Groups, Nauka Publ., M., 1978, 271 pp. (in Russ.)
[2] Skiba A. N., Algebra of Formations, Belaruskaya navuka Publ., Minsk, 1997, 240 pp. (in Russ.)
[3] Kamornikov S. F., Sel'kin M. V., Subgroup functors and classes of finite groups, Belaruskaya navuka Publ., Minsk, 2003, 254 pp. (in Russ.)
[4] Vedernikov V. A., Sorokina M. M., “$\Omega$-foliated formations and Fitting classes of finite groups”, Discrete Mathematics and Applications, 11:5 (2001), 507–527 | DOI | DOI | MR | Zbl
[5] Vedernikov V. A., “Maximal satellites of $\Omega$-foliated formations and Fitting classes”, Proceedings of the Steklov Institute of Mathematics, 2001, Suppl. 2, S217–S233 | DOI | MR | Zbl
[6] Kamozina O. V., “Algebraic lattices of multiply $\Omega$-foliated Fitting classes”, Discrete Mathematics and Applications, 16:3 (2006), 299–305 | DOI | DOI | MR | Zbl
[7] Korpacheva M. A., Sorokina M. M., Vestnik BGU. Seriya “Tochnye i estestvennye nauki”, 2012, no. 4(2), 75–79 (in Russ.)