Keywords: inverse problem, integral condition, variational method.
@article{VYURM_2018_10_1_a1,
author = {R. K. Tagiev and R. S. Kasymova},
title = {Variational method of solving a coefficient inverse problem for an elliptic equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {12--20},
year = {2018},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a1/}
}
TY - JOUR AU - R. K. Tagiev AU - R. S. Kasymova TI - Variational method of solving a coefficient inverse problem for an elliptic equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 12 EP - 20 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a1/ LA - ru ID - VYURM_2018_10_1_a1 ER -
%0 Journal Article %A R. K. Tagiev %A R. S. Kasymova %T Variational method of solving a coefficient inverse problem for an elliptic equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 12-20 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a1/ %G ru %F VYURM_2018_10_1_a1
R. K. Tagiev; R. S. Kasymova. Variational method of solving a coefficient inverse problem for an elliptic equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 12-20. http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a1/
[1] Tikhonov A. N., DAN SSSR, 151:3 (1963), 501–504 (in Russ.) | Zbl
[2] Iskenderov A. D., DAN SSSR, 274:3 (1984), 531–533 (in Russ.) | Zbl
[3] Alifanov O. A., Artiukhin E. A., Rumiantsev S. V., Extreme methods for solving ill-posed problems, Nauka Publ., M., 1988, 285 pp. (in Russ.)
[4] A.L. Karchevsky, “Properties the misfit functional for a nonlinear one-dimensional coefficient hyperbolic inverse problem”, Journal of Inverse and Ill-Posed Problems, 5:2 (1997), 139–163 | DOI | MR | Zbl
[5] Kabanikhin S. I., Iskakov K. T., “Justification of the Steepest Descent Method for the Integral Statement of an Inverse Problem for a Hyperbolic Equation”, Siberian Mathematical Journal, 42:3 (2001), 478–494 | DOI | MR | Zbl
[6] Tagiev R. K., “A Variational Method for Solving the Inverse Problem of Determining the Coefficients of Elliptic Equations” (Azerbaijan, Sumgait, May 5–6, 2003), International Conference “Inverse Problems of Theoretical and Mathematical Physics”, 29–31 (in Russ.)
[7] Iskenderov A. D., Gamidov R. A., “Optimal identification of coefficients of elliptic equations”, Automation and Remote Control, 72:12 (2011), 2553–2562 | DOI | MR | Zbl
[8] A.D. Iskenderov, R.K. Tagiyev, “Variational method solving the problem of identification of the coefficients of quasilinear parabolic problem”, The 7th International Conference «Inverse Problems: modelling and Simulation» (IPMS-2014) (May 26–31, 2014), 31 | Zbl
[9] Tagiyev R. K., Kasumov R. A., “On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition”, Bulletin of Tomsk State University. Mathematics and mechanics, 2017, no. 45, 49–59 | DOI
[10] Ladyzhenskaya O. A., Ural'tseva N. N., Nauka Publ., M., 1973, 576 pp. (in Russ.)
[11] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Nauka Publ., M., 1967, 736 pp. (in Russ.)
[12] Vasil'ev F.P., Metody resheniya ekstremal'nykh zadach, Nauka Publ., M., 1981, 400 pp. (in Russ.)