$h$-Homogeneous $\lambda$-spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 3, pp. 37-41
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be an $h$-homogeneous separable metrizable uncountable $\lambda$-space. Then: 1) $X$ is a CDH-space, 2) $X$ is homeomorphic to $X\setminus A$ for any countable subset $A$ of $X$.
Keywords:
CDH-space; $H$-homogeneous space; $\lambda$-space; homeomorphism.
@article{VYURM_2014_6_3_a4,
author = {S. V. Medvedev},
title = {$h${-Homogeneous} $\lambda$-spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {37--41},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2014_6_3_a4/}
}
TY - JOUR AU - S. V. Medvedev TI - $h$-Homogeneous $\lambda$-spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2014 SP - 37 EP - 41 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2014_6_3_a4/ LA - ru ID - VYURM_2014_6_3_a4 ER -
S. V. Medvedev. $h$-Homogeneous $\lambda$-spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 3, pp. 37-41. http://geodesic.mathdoc.fr/item/VYURM_2014_6_3_a4/