$h$-Homogeneous $\lambda$-spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 3, pp. 37-41

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be an $h$-homogeneous separable metrizable uncountable $\lambda$-space. Then: 1) $X$ is a CDH-space, 2) $X$ is homeomorphic to $X\setminus A$ for any countable subset $A$ of $X$.
Keywords: CDH-space; $H$-homogeneous space; $\lambda$-space; homeomorphism.
@article{VYURM_2014_6_3_a4,
     author = {S. V. Medvedev},
     title = {$h${-Homogeneous} $\lambda$-spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {37--41},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2014_6_3_a4/}
}
TY  - JOUR
AU  - S. V. Medvedev
TI  - $h$-Homogeneous $\lambda$-spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2014
SP  - 37
EP  - 41
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2014_6_3_a4/
LA  - ru
ID  - VYURM_2014_6_3_a4
ER  - 
%0 Journal Article
%A S. V. Medvedev
%T $h$-Homogeneous $\lambda$-spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2014
%P 37-41
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2014_6_3_a4/
%G ru
%F VYURM_2014_6_3_a4
S. V. Medvedev. $h$-Homogeneous $\lambda$-spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 3, pp. 37-41. http://geodesic.mathdoc.fr/item/VYURM_2014_6_3_a4/