Concept extension for concave operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 1, pp. 28-29

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of monotone concave operators is considered by M. A. Krasnosel’sky. Significant development of this theory starts with V. I. Opoytsev’s definition of heterotone. In this paper we prove the convergence to the fixed point for a positive operator's iterations without hypothesis about monotonicity with a significant extension of the idea of concavity.
Keywords: positive operator, monotone operator, concave operator, heterotone operator.
@article{VYURM_2014_6_1_a4,
     author = {M. L. Katkov},
     title = {Concept extension for concave operator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {28--29},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2014_6_1_a4/}
}
TY  - JOUR
AU  - M. L. Katkov
TI  - Concept extension for concave operator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2014
SP  - 28
EP  - 29
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2014_6_1_a4/
LA  - ru
ID  - VYURM_2014_6_1_a4
ER  - 
%0 Journal Article
%A M. L. Katkov
%T Concept extension for concave operator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2014
%P 28-29
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2014_6_1_a4/
%G ru
%F VYURM_2014_6_1_a4
M. L. Katkov. Concept extension for concave operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 1, pp. 28-29. http://geodesic.mathdoc.fr/item/VYURM_2014_6_1_a4/