Concept extension for concave operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 1, pp. 28-29
Voir la notice de l'article provenant de la source Math-Net.Ru
The class of monotone concave operators is considered by M. A. Krasnosel’sky. Significant development of this theory starts with V. I. Opoytsev’s definition of heterotone. In this paper we prove the convergence to the fixed point for a positive operator's iterations without hypothesis about monotonicity with a significant extension of the idea of concavity.
Keywords:
positive operator, monotone operator, concave operator, heterotone operator.
@article{VYURM_2014_6_1_a4,
author = {M. L. Katkov},
title = {Concept extension for concave operator},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {28--29},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2014_6_1_a4/}
}
TY - JOUR AU - M. L. Katkov TI - Concept extension for concave operator JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2014 SP - 28 EP - 29 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2014_6_1_a4/ LA - ru ID - VYURM_2014_6_1_a4 ER -
M. L. Katkov. Concept extension for concave operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 1, pp. 28-29. http://geodesic.mathdoc.fr/item/VYURM_2014_6_1_a4/