About solving of an ill-posed problem for a nonlinear differential equation by means of the projection regularization method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 65-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A retrospective inverse problem for a semi-linear differential equation is studied. The projection regularization method with the choice of the regularization parameter by means of M. M. Lavrentiev scheme is used to find a stable approximate solution to the ill-posed problem under consideration. An explicit evaluation of inaccuracy of this method was measured on one of the cases of robustness.
Keywords: inverse problem; nonlinear differential equation; approximate method; evaluation of inaccuracy.
@article{VYURM_2013_5_2_a8,
     author = {E. V. Tabarintseva},
     title = {About solving of an ill-posed problem for a nonlinear differential equation by means of the projection regularization method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {65--71},
     year = {2013},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a8/}
}
TY  - JOUR
AU  - E. V. Tabarintseva
TI  - About solving of an ill-posed problem for a nonlinear differential equation by means of the projection regularization method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 65
EP  - 71
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a8/
LA  - ru
ID  - VYURM_2013_5_2_a8
ER  - 
%0 Journal Article
%A E. V. Tabarintseva
%T About solving of an ill-posed problem for a nonlinear differential equation by means of the projection regularization method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 65-71
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a8/
%G ru
%F VYURM_2013_5_2_a8
E. V. Tabarintseva. About solving of an ill-posed problem for a nonlinear differential equation by means of the projection regularization method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 65-71. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a8/

[1] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problem and its applications, Nauka, M., 1978, 208 pp. (in Russ.) | MR

[2] Strakhov V. N., Differentsial'nye uravneniya, 6:8 (1970), 1490–1495 | MR | Zbl

[3] Ivanov V. K., Mel'nikova I. V., Filinkov A. I., Differential and operator equations and ill-posed problems, Nauka, M., 1995, 176 pp. (in Russ.) | MR

[4] Tanana V. P., “Optimal order methods of solving non-linear ill-posed problems”, USSR Computational Mathematics and Mathematical Physics, 16:2 (1976), 219–225 | DOI | MR | Zbl

[5] Tanana V. P., Sibirskiy zhurnal industrial'noy matematiki, 6:3 (2003), 119–133 (in Russ.) | MR | Zbl

[6] Tikhonov A. N., Leonov A. S., Yagola A. G., Non-linear illposed problems, Nauka, M., 1995, 312 pp. (in Russ.) | MR

[7] Vasin V. V., Aneev A. L., Ill-posed problems with prior information, Nauka, Ekaterinburg, 1993, 262 pp. (in Russ.) | MR

[8] Kokurin M. Yu., Operator regularization and the study of non-linear monotonic problem, Izd. Mariyskogo gosudarstvennogo universiteta, Yoshkar-Ola, 1998, 292 pp.

[9] V. P. Tanana, Methods for solving of nonlinear operator equations, VSP, Utrecht, 1997, 241 pp. | MR

[10] Tabarintseva E. V., Sib. Zh. Vychisl. Mat., 8:3 (2005), 259–271 (in Russ.)

[11] Tanana V. P., Tabarintseva I. V., Sib. Zh. Ind. Mat., 8:1 (2005), 129–142 (in Russ.) | MR

[12] Henry D., Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981, 348 pp. | MR | MR

[13] Tabarintseva E. V., Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 1, 2013, 253–257 (in Russ.)

[14] Lavrentiev M. M., Some Improperly Posed Problems in Mathematical Physics, Springer-Verlag, Berlin; Heidelberg GmbH Co., 2012, 88 pp. | MR