Towards the differences in behaviour of solutions of linear and non-linear heat-conduction equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 52-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linear and non-linear heat-conduction equations are analyzed by the previously initiated geometrical method of analyzing linear and non-linear equations in partial derivatives. The reason of the difference in behavior of solutions of equations under consideration was stated, as well as the reason of aggravation of the non-linear equation. A class of solutions of linear equations that represents the surfaces of the levels of non-linear heat-conduction equations was excluded.
Keywords: non-linear equations in partial derivatives; heat-conduction equations; exact solutions; surfaces of the level.
@article{VYURM_2013_5_2_a6,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {Towards the differences in behaviour of solutions of linear and non-linear heat-conduction equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {52--59},
     year = {2013},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a6/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - Towards the differences in behaviour of solutions of linear and non-linear heat-conduction equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 52
EP  - 59
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a6/
LA  - ru
ID  - VYURM_2013_5_2_a6
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T Towards the differences in behaviour of solutions of linear and non-linear heat-conduction equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 52-59
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a6/
%G ru
%F VYURM_2013_5_2_a6
L. I. Rubina; O. N. Ul'yanov. Towards the differences in behaviour of solutions of linear and non-linear heat-conduction equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 52-59. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a6/

[1] Kurdyumov S. P., Malinetskiy G. G., Potapov A. B., Unsteady structures, dynamic chaos, cellular automata. New in synergetics. Mysteries of the world of nonequilibrium structure, Nauka, M., 1996, 111 pp. (in Russ.) | Zbl

[2] Samarskiy A. A., Galaktionov V. A., Kurdyumov S. P., Mikhaylov A. P., Blow-up regimes in problems for quasilinear parabolic equations, Nauka, M., 1987, 477 pp. (in Russ.) | MR

[3] J. L. Vazquez, V. Galaktionov, A Stability Technique for Evolution Partial Differential Equations. A Dynamical System Approach, Birkhauser Verlag, 2004, 377 pp. | MR

[4] Berkovich L. M., Vestnik SamGU — Estestvennonauchnaya seriya, 2005, no. 2(36), 32–64 (in Russ.) | MR | Zbl

[5] Kurkina E. S., Nikol'skiy I. M., “About blow-up regimes in equations $u_t=\mathrm{div}\,(u^\sigma+\mathrm{grad}\, u)+u^\beta$”, Differential Equations. Functional Space. Theory of Approximation, Abstracts of the International Conference dedicated to the 100th anniversary of the birth of Sobolev (Novosibirsk, 2008), 512

[6] Rubina L. I., Ul'ianov O. N., Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 2, 2010, 209–225 (in Russ.)

[7] Rubina L. I., Ul'yanov O. N., Proceedings of the Steklov Institute of Mathematics, 261, 2008, 183–200 | DOI | MR

[8] Rubina L. I., Journal of Applied Mathematics and Mechanics, 69:5 (2005), 829–836 (in Russ.) | MR | Zbl

[9] Lomkatsi Ts. D., Weierstrass elliptic function charts. Theoretical part, VTs AN SSSR, M., 1967, 88 pp. (in Russ.) | MR

[10] Gradshteyn I. S., Ryzhik I. M., Table of integrals, sums, series and compositions, Fizmatlit, M., 1962, 1100 pp.