Numerical solution of delayed linearized quasistationary phase-field system of equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 45-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For delayed linearized quasistationary phase-field system of equations the numerical method of solution was proposed. The convergence of explicit difference scheme that takes account of delay in the system under investigation was thoroughly studied. On the basis of the results obtained the implementation of the method was realized.
Keywords: Sobolev type equation; quasistationary phase-field system of equations; difference scheme.
@article{VYURM_2013_5_2_a5,
     author = {E. A. Omelchenko and M. V. Plekhanova and P. N. Davydov},
     title = {Numerical solution of delayed linearized quasistationary phase-field system of equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {45--51},
     year = {2013},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a5/}
}
TY  - JOUR
AU  - E. A. Omelchenko
AU  - M. V. Plekhanova
AU  - P. N. Davydov
TI  - Numerical solution of delayed linearized quasistationary phase-field system of equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 45
EP  - 51
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a5/
LA  - ru
ID  - VYURM_2013_5_2_a5
ER  - 
%0 Journal Article
%A E. A. Omelchenko
%A M. V. Plekhanova
%A P. N. Davydov
%T Numerical solution of delayed linearized quasistationary phase-field system of equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 45-51
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a5/
%G ru
%F VYURM_2013_5_2_a5
E. A. Omelchenko; M. V. Plekhanova; P. N. Davydov. Numerical solution of delayed linearized quasistationary phase-field system of equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 45-51. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a5/

[1] Plotnikov P. I., Klepacheva A. V., Siberian Mathematical Journal, 42:3 (2001), 551–567 | DOI | MR | Zbl

[2] V. E. Fedorov, E. A. Omelchenko, “On solvability of some classes of Sobolev type equations with delay”, Functional Differential Equations, 18:3–4 (2011), 187–199

[3] Fedorov V. E., Omel'chenko E. A., Siberian Mathematical Journal, 53:2 (2012), 335–344 | DOI | MR | Zbl

[4] Lekomtsev A. V., Pimenov V. G., Russian Mathematics (Izvestiya VUZ. Matematika), 53:5 (2009), 54–58 | DOI | MR | Zbl

[5] Pimenov V. G., Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 5, 2010, 151–158 (in Russ.)

[6] Pimenov V. G., Lozhnikov A. B., Proceedings of the Steklov Institute of Mathematics, 275, 2011, 137–148 | DOI | MR

[7] Fedorov V. E., Urazaeva A. V., Proc. of the Voronezh Winter Mathematical School, VGU, Voronezh, 2004, 161–172

[8] Richtmyer R. D., Morton K. W., Difference Methods for Initial-Value Problems, Interscience, New York, 1967, 405 pp. | MR | Zbl

[9] Kim A. V., Pimenov V. G., i-Differential analysis and numerical methods of solutions of functional and differential equations, RKhD, Izhevsk, 2004, 256 pp. (in Russ.)