@article{VYURM_2013_5_2_a3,
author = {E. V. Martyushev},
title = {Algorithmic solution of the five-point pose problem based on the {Cayley} representation of rotation matrices},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {31--38},
year = {2013},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a3/}
}
TY - JOUR AU - E. V. Martyushev TI - Algorithmic solution of the five-point pose problem based on the Cayley representation of rotation matrices JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2013 SP - 31 EP - 38 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a3/ LA - ru ID - VYURM_2013_5_2_a3 ER -
%0 Journal Article %A E. V. Martyushev %T Algorithmic solution of the five-point pose problem based on the Cayley representation of rotation matrices %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2013 %P 31-38 %V 5 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a3/ %G ru %F VYURM_2013_5_2_a3
E. V. Martyushev. Algorithmic solution of the five-point pose problem based on the Cayley representation of rotation matrices. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 31-38. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a3/
[1] E. Kruppa, “Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung”, Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl. Abt. IIa, 122 (1913), 1939–1948 | Zbl
[2] M. Demazure, Sur Deux Problemes de Reconstruction, No RR-0882, INRIA, 1988, 29 pp.
[3] O. Faugeras, S. Maybank, “Motion from Point Matches: Multiplicity of Solutions”, International Journal of Computer Vision, 4 (1990), 225–246 | DOI
[4] A. Heyden, G. Sparr, “Reconstruction from Calibrated Camera — A New Proof of the Kruppa–Demazure Theorem”, Journal of Mathematical Imaging and Vision, 10 (1999), 1–20 | DOI | MR
[5] J. Philip, “A Non-Iterative Algorithm for Determining all Essential Matrices Corresponding to Five Point Pairs”, Photogrammetric Record, 15 (1996), 589–599 | DOI
[6] D. Nistér, “An Efficient Solution to the Five-Point Relative Pose Problem”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 756–777 | DOI
[7] H. Li, R. Hartley, “Five-Point Motion Estimation Made Easy”, IEEE 18th Int. Conf. of Pattern Recognition (2006), 630–633
[8] Z. Kukelova, M. Bujnak, T. Pajdla, “Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems”, Proceedings of the British Machine Conference (2008), 56.1–56.10
[9] H. Stewénius, C. Engels, D. Nistér, “Recent Developments on Direct Relative Orientation”, ISPRS Journal of Photogrammetry and Remote Sensing, 60 (2006), 284–294 | DOI
[10] A. Cayley, “Sur Quelques Propriétés des Déterminants Gauches”, J. Reine Angew. Math., 32 (1846), 119–123 | DOI | Zbl
[11] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press, 1993, 663 pp.
[12] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, 2004, 655 pp. | MR | Zbl
[13] S. Maybank, Theory of Reconstruction from Image Motion, Springer-Verlag, 1993, 261 pp. | MR | Zbl
[14] D. G. Hook, P. R. McAree, “Using Sturm Sequences to Bracket Real Roots of Polynomial Equations”, Graphic Gems I, Sb. nauch. tr., ed. A. Glassner, Academic Press, 1990, 416–422 | DOI
[15] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in C, Second Edition, Cambridge University Press, 1993, 1020 pp. | MR