Polynomial as a sum of periodic functions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 178-179
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that an arbitrary polynomial of degree $n$ representatives as a sum of periodic functions, the minimum number of terms in this sum is $n+1$.
Keywords:
periodic functions; counterexamples in the analysis.
@article{VYURM_2013_5_2_a29,
author = {A. Yu. Evnin},
title = {Polynomial as a sum of periodic functions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {178--179},
year = {2013},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a29/}
}
TY - JOUR AU - A. Yu. Evnin TI - Polynomial as a sum of periodic functions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2013 SP - 178 EP - 179 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a29/ LA - ru ID - VYURM_2013_5_2_a29 ER -
A. Yu. Evnin. Polynomial as a sum of periodic functions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 178-179. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a29/
[1] Evnin A. Yu., “The period of the sum of two periodic functions”, Vestnik YuUrGU. Seriya “Matematika, fizika, khimiya”, 2(42):5 (2005), 56–61 (in Russ.) | Zbl
[2] Evnin A. Yu., “The example of the bijective mapping $f:\mathbb{R}\to\mathbb{R}$ such that $f$ is everywhere discontinuous, but an inverse of the $f$ is continuous at a countable set of points”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 10(227):4 (2011), 38–39 (in Russ.) | Zbl
[3] Evnin A. Yu., Shved D. A., “Functions' representability as a sum of a finite number of periodic functions”, Matematika v shkole, 2013, no. 5, 72–74 (in Russ.)