Explicit scheme for the solution of third boundary value problem for quasi-linear heat equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 174-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In produced paper numerical method for the solution of third boundary value problem for one-dimensional quasi-linear heat equation grounded on the use of explicit finite-difference scheme is offered. The coefficients’ dependence on temperature is overcome by introducing the new unknown function — a primitive integral of conduction. Test problem with known exact solution for numerical calculations is proposed.
Keywords: thermal conductivity; quasi-linear heat equation; explicit finite-difference schemes; approximation.
@article{VYURM_2013_5_2_a28,
     author = {M. Z. Khayrislamov and A. V. Herreinstein},
     title = {Explicit scheme for the solution of third boundary value problem for quasi-linear heat equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {174--177},
     year = {2013},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a28/}
}
TY  - JOUR
AU  - M. Z. Khayrislamov
AU  - A. V. Herreinstein
TI  - Explicit scheme for the solution of third boundary value problem for quasi-linear heat equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 174
EP  - 177
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a28/
LA  - ru
ID  - VYURM_2013_5_2_a28
ER  - 
%0 Journal Article
%A M. Z. Khayrislamov
%A A. V. Herreinstein
%T Explicit scheme for the solution of third boundary value problem for quasi-linear heat equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 174-177
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a28/
%G ru
%F VYURM_2013_5_2_a28
M. Z. Khayrislamov; A. V. Herreinstein. Explicit scheme for the solution of third boundary value problem for quasi-linear heat equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 174-177. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a28/

[1] Gerenshteyn A. V., Mashrabov N., Obozrenie prikladnoy i promyshlennoy matematiki, 15:5 (2008), 870–871

[2] Herreinstein A. W., Herreinstein E. A., Mashrabov N., “Steady Obvious Schemes for Equation of Heat Conductivity”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 15(115):1 (2008), 9–11 (in Russ.)

[3] Samarskiy A. A., The theory of difference schemes, Nauka, M., 1989, 616 pp. (in Russ.) | MR

[4] Kudryashov N. A., Chmykhov M. A., “Approximate solutions to one-dimensional nonlinear heat conduction problems with a given flux”, Computational Mathematics and Mathematical Physics, 47:1 (2007), 107–117 | DOI | MR | Zbl

[5] Zel'dovich Ya. B., Kompaneets A. S., On the 70th anniversary of the A. F. Ioffe, Collection of scientific papers, Izd-vo AN SSSR, M., 1950, 61–71 (in Russ.)