Existence of the fixed point in the case of evenly contractive monotonic operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 160-161

Voir la notice de l'article provenant de la source Math-Net.Ru

The article proves the existence of the fixed point in the case of evenly contractive monotonic operator in the Banach $K$-space. It proved to be right that the iterations converge to the fixed point in the metric of the even convergence. Compactness of the invariant set and the total continuity of the operator are not assumed.
Keywords: positive operator; monotonic concave operator; heterotonic operator.
@article{VYURM_2013_5_2_a24,
     author = {M. L. Katkov},
     title = {Existence of the fixed point in the case of evenly contractive monotonic operator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {160--161},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a24/}
}
TY  - JOUR
AU  - M. L. Katkov
TI  - Existence of the fixed point in the case of evenly contractive monotonic operator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 160
EP  - 161
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a24/
LA  - ru
ID  - VYURM_2013_5_2_a24
ER  - 
%0 Journal Article
%A M. L. Katkov
%T Existence of the fixed point in the case of evenly contractive monotonic operator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 160-161
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a24/
%G ru
%F VYURM_2013_5_2_a24
M. L. Katkov. Existence of the fixed point in the case of evenly contractive monotonic operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 160-161. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a24/