Stability of two-layer recursive neural networks
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 151-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stability conditions are described for the discrete neural networks. Stability regions are constructed in the parameter space for these networks. The problem reduces to the stability problem for the matrix difference equations of higher order with delay. The main tool is the stability cone.
Keywords: neural networks; difference matrix equations; stability of difference equations; two-layer network.
@article{VYURM_2013_5_2_a22,
     author = {S. A. Ivanov},
     title = {Stability of two-layer recursive neural networks},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {151--154},
     year = {2013},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a22/}
}
TY  - JOUR
AU  - S. A. Ivanov
TI  - Stability of two-layer recursive neural networks
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 151
EP  - 154
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a22/
LA  - ru
ID  - VYURM_2013_5_2_a22
ER  - 
%0 Journal Article
%A S. A. Ivanov
%T Stability of two-layer recursive neural networks
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 151-154
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a22/
%G ru
%F VYURM_2013_5_2_a22
S. A. Ivanov. Stability of two-layer recursive neural networks. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 151-154. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a22/

[1] Ivanov S. A., “The stability domain in the parameters space of recursive neural networks with hypercube topology”, Vestnik YuUrGU. Seriya “Matematika. Mekhanika. Fizika”, 34(293):7 (2012), 157–160 (in Russ.)

[2] Ivanov S. A., “Stability of recursive neural networks with star topology”, Estestvennye i tekhnicheskie nauki, 2012, no. 6(62), 21–25 (in Russ.)

[3] T. N. Khokhlova, M. M. Kipnis, “Stability of a ring and linear neural networks with a large number of neurons”, Applied Mathematics and Computation, 2012, 1–14

[4] S. A. Ivanov, M. M. Kipnis, V. V. Malygina, “The stability cone for a difference matrix equation with two delays”, ISRN J. Applied Mathematics, 2011, 910936, 1–19 | DOI | MR

[5] S. A. Ivanov, M. M. Kipnis, “Stability analysis of discrete-time neural networks with delayed interactions: torus, ring, grid, line”, International Journal of Pure and Applied Math., 78:5 (2012), 691–709

[6] M. M. Kipnis, V. V. Malygina, “The stability cone for a matrix delay difference equation”, International Journal of Mathematics and Mathematical Sciences, 2011, 860326, 1–15 | DOI | MR

[7] T. N. Khokhlova, M. M. Kipnis, V. V. Malygina, “The stability cone for a delay differential matrix equation”, Applied Math. Lett., 24 (2011), 742–745 | DOI | MR | Zbl