Experimental and mathematical simulation of auto-ignition of iron micro particles
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 21-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The experimental and numerical studies of autoignition and burning of iron microparticles in oxygen were introduced. Parameters of high-temperature gas environment were created by rapid compression machine. Powders with a particle size 1–125 microns were studied at the oxygen pressure of 0,5–28 MPa and the temperature of 500–1100 K. Ignition delay time was measured by registration of radiation from the side wall of the combustion chamber and by measuring the pressure on the end wall. Critical auto-ignition conditions are determined according to size of the particles, oxygen temperature and pressure. For description of ignition mechanisms a punctual semiempirical simulator was introduced. The simulator gave the opportunity to describe the experimental data on dependence of ignition delay time of iron particles on the ambient temperature, taking into account correlations of critical ignition temperatures with pressure.
Keywords: iron micro particles; oxygen; rapid compression machine; ignition delay time; mathematical simulation.
@article{VYURM_2013_5_2_a2,
     author = {V. V. Leschevich and O. G. Penyazkov and J.-C. Rostaing and A. V. Fedorov and A. V. Shulgin},
     title = {Experimental and mathematical simulation of auto-ignition of iron micro particles},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {21--30},
     year = {2013},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a2/}
}
TY  - JOUR
AU  - V. V. Leschevich
AU  - O. G. Penyazkov
AU  - J.-C. Rostaing
AU  - A. V. Fedorov
AU  - A. V. Shulgin
TI  - Experimental and mathematical simulation of auto-ignition of iron micro particles
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 21
EP  - 30
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a2/
LA  - ru
ID  - VYURM_2013_5_2_a2
ER  - 
%0 Journal Article
%A V. V. Leschevich
%A O. G. Penyazkov
%A J.-C. Rostaing
%A A. V. Fedorov
%A A. V. Shulgin
%T Experimental and mathematical simulation of auto-ignition of iron micro particles
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 21-30
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a2/
%G ru
%F VYURM_2013_5_2_a2
V. V. Leschevich; O. G. Penyazkov; J.-C. Rostaing; A. V. Fedorov; A. V. Shulgin. Experimental and mathematical simulation of auto-ignition of iron micro particles. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 21-30. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a2/

[1] C. M. Allen, T. Lee, “Energetic-nanoparticle enhanced combustion of liquid fuels in a rapid compression machine”, Proc. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition (2009), AIAA 2009-227

[2] M. A. Trunov, M. Schoenitz, E. L. Dreizin, “Ignition of aluminum powders under different experimental conditions”, Propellants, Explosives, Pyrotechnics, 30 (2005), 36–43 | DOI

[3] V. V. Lissianski, P. M. Maly, V. M. Zamansky, W. C. Gardiner, “Utilization of iron additives for advanced control of $\mathrm{NO_x}$ emissions from stationary combustion sources”, Ind. Eng. Chem. Res., 20:15 (2001), 3287–3293 | DOI

[4] Zolotko A. N., Vovchuk Ya. I., Poletaev N. I., Frolko A. V., Al'tman I. S., Fizika goreniya i vzryva, 32:3 (1996), 24–34 (in Russ.)

[5] K. L. Cashdollar, I. A. Zlochower, “Explosion temperatures and pressures of metals and other elemental dust clouds”, Journal of Loss Prevention in the Process Industries, 20 (2007), 337–348 | DOI

[6] V. M. Boiko, A. N. Papyrin, M. Wolinski, P. Wolanski, “Dynamics of dispersion and ignition of dust layers by a shock wave”, Progress in Astronautics and Aeronautics, 94 (1984), 293–301

[7] A. A. Borisov, B. E. Gel'fand, E. I. Timofeev et al., “Ignition of dust suspensions behind shock waves”, Progress in Astronautics and Aeronautics, 94 (1984), 332–339

[8] Y. A. Baranyshyn, L. I. Belaziorava, K. N. Kasparov, O. G. Penyazkov, “Photoemission measurements of soot particles temperature at pyrolysis of ethylene”, Nonequilibrium Phenomena: Plasma, Combustion, Atmosphere, Torus Press Ltd., M., 2009, 87–93

[9] Yu. N. Ryabinin, N. N. Sobolev, A. M. Markevich, I. I. Tamm, “Optical properties of gases at ultra high pressures”, Journal of Experimental and Theoretical Physics, 23:5 (1952), 564–575

[10] Al'tman I. S., Fizika goreniya i vzryva, 40:1 (2004), 75–77 | MR

[11] Fedorov A. V., Shul'gin A. V., Fizika goreniya i vzryva, 47:6 (2011), 98–100 | MR | Zbl

[12] Leshchevich V. V., Penyaz'kov O. G., Fedorov A. V., Shul'gin A. V., Rosten Zh.-K., Inzhenerno-fizicheskiy zhurnal, 85:1 (2012), 139–144 (in Russ.)

[13] Bolobov V. I., Podlevskikh N. A., Fizika goreniya i vzryva, 37:6 (2001), 46–55 (in Russ.)

[14] Hall G., Watt J. M., Modern Numerical Methods for Ordinary Differential Equations, Clarendon press, Oxford, 312 pp. | MR

[15] Fedorov A. V., Kharlamova Yu. V., Fizika goreniya i vzryva, 39:5 (2003), 65–68 (in Russ.)