Fiber and interferential method of obtaining non-homogeneous polarized beam
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 128-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The process of distribution of circularly polarized radiation in small-mode optical fiber is represented in this paper. The interferential method of obtaining non-homogeneous polarized beams is described.
Keywords: polarization; optical fiber; interference.
@article{VYURM_2013_5_2_a17,
     author = {M. V. Bolshakov and A. V. Guseva and N. D. Kundikova and I. I. Popkov},
     title = {Fiber and interferential method of obtaining non-homogeneous polarized beam},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {128--132},
     year = {2013},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a17/}
}
TY  - JOUR
AU  - M. V. Bolshakov
AU  - A. V. Guseva
AU  - N. D. Kundikova
AU  - I. I. Popkov
TI  - Fiber and interferential method of obtaining non-homogeneous polarized beam
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 128
EP  - 132
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a17/
LA  - ru
ID  - VYURM_2013_5_2_a17
ER  - 
%0 Journal Article
%A M. V. Bolshakov
%A A. V. Guseva
%A N. D. Kundikova
%A I. I. Popkov
%T Fiber and interferential method of obtaining non-homogeneous polarized beam
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 128-132
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a17/
%G ru
%F VYURM_2013_5_2_a17
M. V. Bolshakov; A. V. Guseva; N. D. Kundikova; I. I. Popkov. Fiber and interferential method of obtaining non-homogeneous polarized beam. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 128-132. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a17/

[1] D. P. Biss, T. G. Brown, “Polarization-vortex-driven second-harmonic generation”, Optics Letters, 28:11 (2003), 923–925 | DOI

[2] S. Carrasco, B. E. Saleh, M. C. Teich, J. T. Fourkas, “Second- and third-harmonic generation with vector Gaussian beams”, J. Opt. Soc. Am. B, 23:10 (2006), 2134–2141 | DOI

[3] D. P. Biss, K. S. Youngworth, T. G. Brown, “Dark-field imaging with cylindrical-vector beams”, Appl. Opt., 45:3 (2006), 470–479 | DOI

[4] Q. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams”, J. Opt. A: Pure Appl. Opt., 5:3 (2003), 229–232 | DOI

[5] Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization”, Opt. Express, 12:15 (2004), 3377–3382 | DOI

[6] Y. Kozawa, S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams”, Opt. Express, 18:10 (2010), 10828–10833 | DOI

[7] Y. Zhang, D. Biaofeng, S. Taikei, “Trapping two types of particles using a double-ring-shaped radially polarized beam”, Phys. Rev. A, 81:2 (2010), 023831 | DOI

[8] H. Rang, B. Jia, J. Li, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam”, Applied Physics Letters, 96:6 (2010), 063702 | DOI

[9] M. Meier, V. Romano, T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation”, Applied Physics A: Materials Science Processing, 86:3 (2007), 329–334 | DOI | MR

[10] M. Kraus, M. A. Ahmed, A. Michalowski, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization”, Opt. Express, 18:21 (2010), 22305 | DOI

[11] V. G. Niziev, A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency”, Journal of Physics D: Applied Physics, 32:13 (1999), 1455 | DOI

[12] L. C. Steinhauer, W. D. Kimura, “A new approach for laser particle acceleration in vacuum”, J. Appl. Phys., 72:8 (1992), 3237 | DOI

[13] L. J. Wong, F. X. Kartner, “Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam”, Opt. Express, 18:24 (2010), 25035 | DOI

[14] S. G. Bochkareva, K. I. Popov, V. Yu. Bychenkova, “Vacuum electron acceleration by a tightly focused, radially polarized, relativistically strong laser pulse”, Plasma Physics Reports, 37:7 (2011), 603 | DOI

[15] G. M. Lerman, A. Yanai, N. Ben-Yosef, U. Levy, “Demonstration of an elliptical plasmonic lens illuminated with radially-like polarized field”, Opt. Express, 18:10 (2010), 10871 | DOI

[16] Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications”, Advances in Optics and Photonics, 1:1 (2009), 1–57 | DOI

[17] Darsht M. Ya., Zel'dovich B. Ya., Kataevskaya I. V., Kundikova N. D., “Formation of an isolated wavefront dislocation”, JETP, 80:5, 817

[18] Gerrard A., Burch J. M., Introduction to Matrix Methods in Optics, John Wiley Sons, New York, 1975, 356 pp.

[19] Snyder A. W., Love J. D., Optical Waveguide Theory, Springer, 1983, 734 pp.