Ab-initio simulation of influence of short-range ordering carbon impurities on the energy of their dissolution in the FCC-iron
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 108-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first principle simulation of equilibrium structure and FCC-iron characteristics was carried out by the software package WIEN2k. The optimal parameters which allow building the most accurate model were generated. Energies of dissolution of carbon atoms, their relative positions and the contribution of the elastic effects to the energy of system were calculated for non-magnetic (NM) and double-layer antiferromagnetic states (AFMD) of FCC-iron.
Keywords: irst principle simulation; FCC-iron; carbon impurity; WIEN2k.
@article{VYURM_2013_5_2_a14,
     author = {Ya. M. Ridnyi and A. A. Mirzoev and D. A. Mirzaev},
     title = {Ab-initio simulation of influence of short-range ordering carbon impurities on the energy of their dissolution in the {FCC-iron}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {108--116},
     year = {2013},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a14/}
}
TY  - JOUR
AU  - Ya. M. Ridnyi
AU  - A. A. Mirzoev
AU  - D. A. Mirzaev
TI  - Ab-initio simulation of influence of short-range ordering carbon impurities on the energy of their dissolution in the FCC-iron
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 108
EP  - 116
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a14/
LA  - ru
ID  - VYURM_2013_5_2_a14
ER  - 
%0 Journal Article
%A Ya. M. Ridnyi
%A A. A. Mirzoev
%A D. A. Mirzaev
%T Ab-initio simulation of influence of short-range ordering carbon impurities on the energy of their dissolution in the FCC-iron
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 108-116
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a14/
%G ru
%F VYURM_2013_5_2_a14
Ya. M. Ridnyi; A. A. Mirzoev; D. A. Mirzaev. Ab-initio simulation of influence of short-range ordering carbon impurities on the energy of their dissolution in the FCC-iron. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 108-116. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a14/

[1] Umanskiy Ya. S., Skakov Yu. A., Ivanov A. N., Rastorguev L. N., Crystallography, radiographic imaging and electronic microscopy, Metallurgiya, M., 1982, 632 pp. (in Russ.)

[2] Kurdyumov G. V., Utevskiy L. M., Entin R. I., Transformations in iron and steel, Nauka, M., 1977, 236 pp. (in Russ.)

[3] Khachaturyan A. G., “Carbon in martensite of steel”, Imperfections of crystalline construction and martensitic transformations, Nauka, M., 1971, 34–45 (in Russ.)

[4] Mogutnov B. M., Tomilin N. A., Shvartsman L. A., Thermodynamics of iron-carbon alloys, Metallurgiya, M., 1972, 328 pp. (in Russ.)

[5] H. Dunwald, C. Wagner, “Thermodynamische Untersuchungen zum System Eisen–Kohlenstoff–Sauerstoff”, Z. Anorg. Allgem Chem., 199 (1931), 321–346 | DOI

[6] L. S. Darken, R. P. Smith, “Appendix to the paper by Smith R. P. Equilibrium of iron-carbon alloys”, J. Amer. Chem. Soc., 1946, no. 7, 1163–1175

[7] Temkin M. I., Shvartsman L. A., Zhurnal fizicheskoy khimii, 1949, no. 6, 755–760 (in Russ.)

[8] L. Kaufman, S. V. Radcliffe, M. Cohen, “Thermodynamics of bainite reaction”, Decomposition of Austenite by Diffusional Processes, Sb. nauch. tr., AIME, Interscience Publishers, New York, 1962, 313–352

[9] R. B. McLellan, W. W. Dunn, “A quassi-chemical treatment of interstitial solid solutions: it application to carbon austenite”, J. Phys. Chem. Solids, 30:11 (1969), 2631–2637 | DOI

[10] Kozheurov V. A., Izvestiya VUZov. Chernaya metallurgiya, 1965, no. 2, 10–16 (in Russ.)

[11] W. W. Dunn, R. B. McLellan, “The Application of Quassi-chemical Solid Solution Model to Carbon Austenite”, Metall Trans., 1:5 (1970), 1263–1265

[12] Bol'shov L. A., Suslov V. N., Fizika metallov i metallovedenie, 98:6 (2004), 3–7 (in Russ.)

[13] Gavrilyuk V. G., Carbon distribution in steel, Naukova Dumka, Kiev, 1987, 208 pp.

[14] Nadutov V. M., Interatomic interaction and distribution of interstitial atoms in iron-nitrogenuous and iron-carbon alloys, Dr. phys. and math. sci. synopsis of diss., IMF NAN Ukrainy im. G. V. Kurdyumova, Kiev, 1997, 55 pp.

[15] D. E. Jiang, E. A. Carter, “Carbon dissolution and diffusion in ferrite and austenite from first principles”, Physical Review B, 67 (2003), 214103 | DOI

[16] J. A. Slane, C. Wolverton, R. Gibala, “Experimental and Theoretical Evidence for Carbon-Vacancy Binding in Austenite”, Metallurgical and Materials Transactions A, 35:8 (2004), 2239–2245 | DOI

[17] D. W. Boukhvalov, Y. N. Gornostyrev, M. I. Katsnelson, A. I. Lichtenstein, “Magnetism and Local Distortions near Carbon Impurity in g-Iron”, Physical Review Letters, 99 (2007), 247205 | DOI

[18] Ivanovskiy L. I., Medvedeva N. I., Fazovyeperekhody, uporyadochennye sostoyaniya i novye materialy, 2012, no. 10, 24–28 (in Russ.)

[19] A. N. Timoshevskii, S. O. Yablonovskii, “Ab-initio modeling of the short range order in $\mathrm{Fe}$-$\mathrm{N}$ and $\mathrm{Fe}$-$\mathrm{C}$ austenitic alloys”, Functional Materials, 18:4 (2011), 517–522

[20] V. G. Gavriljuk, V. N. Shivanyuk, B. D. Shanina, “Change in the electron structure caused by $\mathrm{C}$, $\mathrm{N}$ and $\mathrm{H}$ atoms in iron and its effect on their interaction with dislocations”, Acta Materialia, 53 (2005), 5017–5024 | DOI

[21] K. Schwarz, P. Blaha, G. K. H. Madsen, “Electronic structure calculations of solids using the WIEN2k package for material science”, Computer Physics Communications, 147 (2002), 71–76 | DOI | Zbl

[22] M. Acet, E. F. Wassermann, K. Andersen et al., “The Role of the Nature of Magnetic Coupling on the Martensitic Transformation in $\mathrm{Fe}$-$\mathrm{Ni}$”, Journal de Physique IV France, 7:C5 (1997), 401–404

[23] N. I. Medvedeva, D. V. Aken, J. E. Medvedeva, “Magnetism in bcc and fcc $\mathrm{Fe}$ with carbon and manganese”, Journal of Physics: Condensed Matter, 22 (2010), 316002 | DOI

[24] S. Cottenier, Density Functional Theory and the family of (L)APW-methods: a step-by-step introduction, , 2004 http://www.wien2k.at/reg_user/textbooks/DFT_and_LAPW-2_cottenier.pdf

[25] Ursaeva A. V., Ruzanova G. E., Mirzoev A. A., “Selection of optimal parameters for formation the most accurate model of BCC iron”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 9(185):2 (2010), 97–101 (in Russ.) | MR

[26] Rakitin M. C., Mirzoev A. A., Mirzaev D. A., “Change of electronic structure in iron containing interstitial atoms of hydrogen”, Vestnik YuUrGU. Seriya: Metalurgiya, 13(189):14 (2010), 67–71 (in Russ.)

[27] M. Onink, C. M. Brakman, F. D. Tichelaar et al., “The lattice parameters of austenite and ferrite in $\mathrm{Fe}$-$\mathrm{C}$ as functions of carbon concentration and temperature”, Scripta Metallurgica Et Materialia, 29:8 (1993), 1011–1016 | DOI

[28] J. A. Slane, C. Wolverton, R. Gibala, “Experimental and Theoretical Evidence for Carbon-Vacancy Binding in Austenite”, Metallurgical and Materials Transactions A, 35:8 (2004), 2239–2245 | DOI

[29] J. A. Lobo, G. H. Geiger, “Thermodynamics of carbon in austenite and $\mathrm{Fe}$-$\mathrm{Mo}$ austenite”, Metallurgical Transactions A, 7:8 (1976), 1359–1364 | DOI