Units of integral group rings of finite groups with a direct multiplier of order~3
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 13-20

Voir la notice de l'article provenant de la source Math-Net.Ru

The description of units of integral group rings of finite groups of type $A\times Z_3$ was obtained, where $A$ contains a central subgroup of order $3$. For example, the unit groups of integral group rings of Abelian groups of the types $(9,3)$, $(9,3,3)$ and $(15,3)$ were found.
Keywords: Abelian group; group ring; unit group of group ring.
@article{VYURM_2013_5_2_a1,
     author = {S. A. Kolyasnikov},
     title = {Units of integral group rings of finite groups with a direct multiplier of order~3},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {13--20},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a1/}
}
TY  - JOUR
AU  - S. A. Kolyasnikov
TI  - Units of integral group rings of finite groups with a direct multiplier of order~3
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 13
EP  - 20
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a1/
LA  - ru
ID  - VYURM_2013_5_2_a1
ER  - 
%0 Journal Article
%A S. A. Kolyasnikov
%T Units of integral group rings of finite groups with a direct multiplier of order~3
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 13-20
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a1/
%G ru
%F VYURM_2013_5_2_a1
S. A. Kolyasnikov. Units of integral group rings of finite groups with a direct multiplier of order~3. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 13-20. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a1/