Units of integral group rings of finite groups with a direct multiplier of order 3
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 13-20
Cet article a éte moissonné depuis la source Math-Net.Ru
The description of units of integral group rings of finite groups of type $A\times Z_3$ was obtained, where $A$ contains a central subgroup of order $3$. For example, the unit groups of integral group rings of Abelian groups of the types $(9,3)$, $(9,3,3)$ and $(15,3)$ were found.
Keywords:
Abelian group; group ring; unit group of group ring.
@article{VYURM_2013_5_2_a1,
author = {S. A. Kolyasnikov},
title = {Units of integral group rings of finite groups with a direct multiplier of order~3},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {13--20},
year = {2013},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a1/}
}
TY - JOUR AU - S. A. Kolyasnikov TI - Units of integral group rings of finite groups with a direct multiplier of order 3 JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2013 SP - 13 EP - 20 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a1/ LA - ru ID - VYURM_2013_5_2_a1 ER -
%0 Journal Article %A S. A. Kolyasnikov %T Units of integral group rings of finite groups with a direct multiplier of order 3 %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2013 %P 13-20 %V 5 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a1/ %G ru %F VYURM_2013_5_2_a1
S. A. Kolyasnikov. Units of integral group rings of finite groups with a direct multiplier of order 3. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 13-20. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a1/
[1] Bovdi A. A., Multiplicative group of integral group ring, Uzhgorodskiy gosudarstvennyy universitet, Uzhgorod, 1987, 210 pp. (in Russ.)
[2] Kolyasnikov S. A., About group of units of integral group ring of finite groups factorable into direct composition, Red. Sibirskogo Matematicheskogo Zhurnala, Novosibirsk, 2000, 45 pp. (in Russ.)
[3] Alev R. Zh., Panina G. A., Russian Mathematics (Izvestiya VUZ. Matematika), 43:11 (1999), 80–83 | MR
[4] Martin Schönert et al., GAP — Groups, Algorithms, and Programming, sixth edition, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1997