About Wiener--Hopf Factorization of Functionally Commutative Matrix Functions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 6-12

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of an explicit solution of the Wiener–Hopf factorization problem is proposed for functionally commutative matrix functions of a special kind. Elementary facts of the representation theory of finite groups are used. Symmetry of the matrix function that is factored out allows to diagonalize it by a constant linear transformation. Thus, the problem is reduced to the scalar case.
Keywords: Wiener–Hopf factorization; special indexes; finite groups.
@article{VYURM_2013_5_2_a0,
     author = {V. M. Adukov},
     title = {About {Wiener--Hopf} {Factorization} of {Functionally} {Commutative} {Matrix} {Functions}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {6--12},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a0/}
}
TY  - JOUR
AU  - V. M. Adukov
TI  - About Wiener--Hopf Factorization of Functionally Commutative Matrix Functions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 6
EP  - 12
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a0/
LA  - ru
ID  - VYURM_2013_5_2_a0
ER  - 
%0 Journal Article
%A V. M. Adukov
%T About Wiener--Hopf Factorization of Functionally Commutative Matrix Functions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 6-12
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a0/
%G ru
%F VYURM_2013_5_2_a0
V. M. Adukov. About Wiener--Hopf Factorization of Functionally Commutative Matrix Functions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 2, pp. 6-12. http://geodesic.mathdoc.fr/item/VYURM_2013_5_2_a0/