A variant of a metric for unbounded convex sets
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 40-49

Voir la notice de l'article provenant de la source Math-Net.Ru

Convex analysis methods are used for the construction of distance function between closed (un­bounded in common case) sets of Euclidean space. It is shown that the distance satisfies all properties of metric. It is proved that this distance is invariant under motion of the sets in space. This metric space is proved to be complete.
Mots-clés : Hausdorff distance
Keywords: metric, convex set, recessive cone.
@article{VYURM_2013_5_1_a6,
     author = {P. D. Lebedev and V. N. Ushakov},
     title = {A variant of a metric for unbounded convex sets},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {40--49},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a6/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - V. N. Ushakov
TI  - A variant of a metric for unbounded convex sets
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 40
EP  - 49
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a6/
LA  - ru
ID  - VYURM_2013_5_1_a6
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A V. N. Ushakov
%T A variant of a metric for unbounded convex sets
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 40-49
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a6/
%G ru
%F VYURM_2013_5_1_a6
P. D. Lebedev; V. N. Ushakov. A variant of a metric for unbounded convex sets. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 40-49. http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a6/