Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 26-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse boundary problem is solved in the hypothesis that the required solution is a piecewise smooth function, estimates of above approximate solution are given. The estimates are considerably su­perior to the known estimates by the accuracy.
Keywords: operator equation, regularity, optimal method, ill-posed problem.
Mots-clés : error estimation
@article{VYURM_2013_5_1_a4,
     author = {T. S. Kamaltdinova},
     title = {Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {26--33},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a4/}
}
TY  - JOUR
AU  - T. S. Kamaltdinova
TI  - Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 26
EP  - 33
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a4/
LA  - ru
ID  - VYURM_2013_5_1_a4
ER  - 
%0 Journal Article
%A T. S. Kamaltdinova
%T Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 26-33
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a4/
%G ru
%F VYURM_2013_5_1_a4
T. S. Kamaltdinova. Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 26-33. http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a4/