Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 26-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Inverse boundary problem is solved in the hypothesis that the required solution is a piecewise smooth function, estimates of above approximate solution are given. The estimates are considerably superior to the known estimates by the accuracy.
Keywords:
operator equation, regularity, optimal method, ill-posed problem.
Mots-clés : error estimation
Mots-clés : error estimation
@article{VYURM_2013_5_1_a4,
author = {T. S. Kamaltdinova},
title = {Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {26--33},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a4/}
}
TY - JOUR AU - T. S. Kamaltdinova TI - Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2013 SP - 26 EP - 33 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a4/ LA - ru ID - VYURM_2013_5_1_a4 ER -
%0 Journal Article %A T. S. Kamaltdinova %T Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2013 %P 26-33 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a4/ %G ru %F VYURM_2013_5_1_a4
T. S. Kamaltdinova. Approximate solution of inverse boundary problem for the heat conductivity equation by nonlinear method of projection regularity. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 26-33. http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a4/