Inverse problem for nonlinear integral differential equation with hyperbolic operator of a high degree
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 69-75
Voir la notice de l'article provenant de la source Math-Net.Ru
ln this paper a method of studying an inverse problem for nonlinear integral differential equations with hyperbolic operator of arbitrary natural degree is given. The theorem on the existence and uniqueness of the solution of this problem is proved.
Keywords:
inverse problem, nonlinear equation, hyperbolic operator of a high degree, method of characteristics, the existence and uniqueness of the solution.
@article{VYURM_2013_5_1_a10,
author = {T. K. Yuldashev},
title = {Inverse problem for nonlinear integral differential equation with hyperbolic operator of a high degree},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {69--75},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a10/}
}
TY - JOUR AU - T. K. Yuldashev TI - Inverse problem for nonlinear integral differential equation with hyperbolic operator of a high degree JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2013 SP - 69 EP - 75 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a10/ LA - ru ID - VYURM_2013_5_1_a10 ER -
%0 Journal Article %A T. K. Yuldashev %T Inverse problem for nonlinear integral differential equation with hyperbolic operator of a high degree %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2013 %P 69-75 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a10/ %G ru %F VYURM_2013_5_1_a10
T. K. Yuldashev. Inverse problem for nonlinear integral differential equation with hyperbolic operator of a high degree. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a10/