Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 8-11

Voir la notice de l'article provenant de la source Math-Net.Ru

We compose the table of knots in the thickened torus $T\times I$ with minimal diagrams which are not in a circle and have five crossing intersections.
Keywords: knot, thickened torus, knot table.
@article{VYURM_2013_5_1_a1,
     author = {A. A. Akimova},
     title = {Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {8--11},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a1/}
}
TY  - JOUR
AU  - A. A. Akimova
TI  - Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2013
SP  - 8
EP  - 11
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a1/
LA  - ru
ID  - VYURM_2013_5_1_a1
ER  - 
%0 Journal Article
%A A. A. Akimova
%T Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2013
%P 8-11
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a1/
%G ru
%F VYURM_2013_5_1_a1
A. A. Akimova. Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 8-11. http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a1/