Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 8-11
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We compose the table of knots in the thickened torus $T\times I$ with minimal diagrams which are not in a
circle and have five crossing intersections.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
knot, thickened torus, knot table.
                    
                  
                
                
                @article{VYURM_2013_5_1_a1,
     author = {A. A. Akimova},
     title = {Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {8--11},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Akimova TI - Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2013 SP - 8 EP - 11 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a1/ LA - ru ID - VYURM_2013_5_1_a1 ER -
%0 Journal Article %A A. A. Akimova %T Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2013 %P 8-11 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a1/ %G ru %F VYURM_2013_5_1_a1
A. A. Akimova. Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 5 (2013) no. 1, pp. 8-11. http://geodesic.mathdoc.fr/item/VYURM_2013_5_1_a1/