Reflection of regular functions
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 24 (2021) no. 4, pp. 79-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in article, that a function with reflection in relation to some point can be the double reflection of initial function in relation to some other points. The double reflection results in the periodicity of some analytical function. In a example we obtain a periodic odd function, if we move the result of two reflections. We obtain a similar result after consideration of the $F(p)$ field: $F(p)=f(p-2A)$, if $p=x+iy$, $x=A$, for all $A$. The $F(A+B+iy)$ values equal to the $f(z-2A-2B)$ values in the $A+B+iy$ point as a result of two moving of the $f(p)$ function to the right for all $y$ (at first we move the $f(-A+iy$) on the $2A$ distance, after we move the the $F(p)=f(A+iy)=f(p)$ function on the $2B$ distance in relation to center in the $(A,0)$ point); the result of the such double moving is equal to the values of initial field in the $A+B+iy$ point. The reflection of the $F(p)$ field in the $(A,0)$ and $(A+B,0)$ points is the $f(-p)$ regular function for all real $A$, $B$. We can move the $F(p)$ values in reverse direction (to the left). In the situation the values (in the left part of plane) are equal to the values of initial regular $f(p)$ function. As a result of two moving we obtain a new $G(p)$ field in relation to the $f(p)$ function after the movements to the left with the $(-A,0)$ center. The regular $f(p)$ function is equal to the $G(p)$ field, if $ p-A$. It is proved, that the $f(p)$ function is periodic. We can use the $f(p)=u+iv$ equality, if $F(p)=u-iv$ (for the regular $f(p)$ functions with the real values on the imaginary axis). If the $f(p)$ function is regular in the left half of plane, the fact results in the equality $f(p)=c$ too, $c=\mathrm{const}$. The $F(p)$ field is the field of the moved functions.
Keywords: regular function, double reflection, periodicity, even functions, moved functions, field of complex values.
@article{VVGUM_2021_24_4_a5,
     author = {A. V. Pavlov},
     title = {Reflection of regular functions},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {79--82},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2021_24_4_a5/}
}
TY  - JOUR
AU  - A. V. Pavlov
TI  - Reflection of regular functions
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2021
SP  - 79
EP  - 82
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2021_24_4_a5/
LA  - ru
ID  - VVGUM_2021_24_4_a5
ER  - 
%0 Journal Article
%A A. V. Pavlov
%T Reflection of regular functions
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2021
%P 79-82
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2021_24_4_a5/
%G ru
%F VVGUM_2021_24_4_a5
A. V. Pavlov. Reflection of regular functions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 24 (2021) no. 4, pp. 79-82. http://geodesic.mathdoc.fr/item/VVGUM_2021_24_4_a5/