Bounded solutions of the stationary Schr\"{o}dinger equation with finite energy integral on model manifolds
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 24 (2021) no. 3, pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for the existence of nontrivial bounded solutions of the stationary Schrodinger equation with a finite energy integral on model varieties are obtained. A condition for the existence of nontrivial bounded solutions with a finite integral of energy in the exterior of a compactum on arbitrary Riemannian manifolds is also obtained. Let $D=(0;+\infty)\times S,$ where $S$ is compact Riemannian manifold. Metrics on $D$ is following $$ds^2=dr^2+g^2(r)d\theta^2.$$ Where $g(r)$ is positive, smooth on $(0,+\infty)$ function, $d\theta^2$ is metrics on $S.$ We will study solutions of the stationary Schrodinger equation $$\Delta u-c(r)u=0$$ on $D$. Let $r_0=\mathrm{const} >0, n=\dim D$. Theorem 1. If one of the following conditions is fulfilled on $ D $: $ \mu) $ $ R \infty $; $ \eta) $ $ R = \infty, $ $ K = \infty $; $ \xi) $ $ J = \infty, $ $ K \infty $ then the Liouville function of the end $ D $ has a finite energy integral. If one of the conditions $ \omega) $ $ R = \infty $, $ I \infty; $ $ \rho) $ $ R = \infty, $ $ I = \infty, $ $ J \infty $ then The Liouville Function of end $ D $ has a divergent energy integral. Theorem 2. On an arbitrary Riemannian manifold $ M $, the convergence of the energy integral of the Liouville function of the exterior of the compact (Liouville function of the end) implies the convergence of the energy integral of the Liouville function.
Keywords: energy integral, stationary Schrödinger equation, massive sets, Riemannian manifolds.
Mots-clés : Liouville function
@article{VVGUM_2021_24_3_a0,
     author = {A. G. Losev and V. V. Filatov},
     title = {Bounded solutions of the stationary {Schr\"{o}dinger} equation with finite energy integral  on model manifolds},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2021_24_3_a0/}
}
TY  - JOUR
AU  - A. G. Losev
AU  - V. V. Filatov
TI  - Bounded solutions of the stationary Schr\"{o}dinger equation with finite energy integral  on model manifolds
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2021
SP  - 5
EP  - 17
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2021_24_3_a0/
LA  - ru
ID  - VVGUM_2021_24_3_a0
ER  - 
%0 Journal Article
%A A. G. Losev
%A V. V. Filatov
%T Bounded solutions of the stationary Schr\"{o}dinger equation with finite energy integral  on model manifolds
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2021
%P 5-17
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2021_24_3_a0/
%G ru
%F VVGUM_2021_24_3_a0
A. G. Losev; V. V. Filatov. Bounded solutions of the stationary Schr\"{o}dinger equation with finite energy integral  on model manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 24 (2021) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/VVGUM_2021_24_3_a0/