Criteria of removable sets for harmonic functions in the Sobolev spaces $\mathbf{L^1_{p,w}}$
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 22 (2019) no. 2, pp. 51-64
Cet article a éte moissonné depuis la source Math-Net.Ru
Ahlfors and Beurling [16] proved that set $E$ is removable for class $AD^2$ of analytic functions with the finite Dirichlet integral if and only if $E$ does not change extremal distances. Their proof uses the conformal invariance of class $AD^2$, so it does not immediately generalize to $p\ne2$ and to the relevant classes of harmonic functions in the space. In 1974 Hedberg [19] proposed new approaches to the problem of describing removable singularities in the function theory. In particular he gave the exact functional capacitive conditions for a set to be removable for class $HD^p(G)$. Here $HD^p(G)$ is the class of real-valued harmonic functions $u$ in a bounded open set $G\subset R^n$, $n\ge2$, and such that $$ \int\limits_G|\nabla u|^p\,dx<\infty, \quad p>1. $$ In this paper we extend Hedberg's results on class $HD^{p,w}(G)$ of harmonic functions $u$ in $G$ and such that $$ \int\limits_G|\nabla u|^p\,wdx<\infty. $$ Here a locally integrable function $w:R^n\to(0,+\infty)$ satisfies the Muckenhoupt condition [20] $$ \sup\frac1{|Q|}\int\limits_Qwdx \left(\frac1{|Q|}\int\limits_Qw^{1-q}dx\right)^{p-1}<\infty, $$ where the supremum is taking over all coordinate cubes $Q\subset R^n$, $q\in (1,+\infty)$ and $\frac1p+\frac1q=1$; by $\mathcal L_n (Q)=|Q|$ we denote the $n$-dimensional Lebesgue measure of $Q$. We denote by $L^1_{q,\tilde w}(G)$ the Sobolev space of locally integrable functions $F$ on $G$, whose generalized gradient in $G$ are such that $$ \|f\|_{L^1_{q,\tilde w}(G)}=\left(\int\limits_G|\nabla f|^q\,\tilde wdx\right)^{\frac1q}<\infty,\text{ where }\tilde w=w^{1-q}. $$ The closure of $C_0^\infty(G)$ in $\|\cdot \|_{L^1_{q,\tilde w}(G)}$ is denoted by $L^{\circ 1}_{q,\tilde w}(G)$. For compact set $K\subset G$ $(q,\tilde w)$-capacity regarding $G$ is defined by $$ C_{q,\tilde w}(K)=\inf_v\int\limits_G|\nabla v|^q\,\tilde wdx, $$ where the infimum is taken over all $v\in C^\infty_0(G)$ such that $v=1$ in some neighbourhood of $K$. Note that $C_{q,\tilde w}(K)=0$ is independent from the choice of bounded set $G\subset R^n$. We set $C_{q,\tilde w}(F)=0$ for arbitrary $F\subset R^n$ if for every compact $K\subset F$ there exists a bounded open set $G$ such that $C_{q,\tilde w}(K)=0$ regarding $G$. To conclude, we formulate the main results. Theorem 1. Compact $E\subset G$ is removable for $HD^{p,w}(G)$ if and only if $C_0^\infty(G\setminus E)$ is dense in $L^{\circ 1}_{q,\tilde w}(G)$. Theorem 2. Compact $E\subset G$ is removable for $HD^{p,w}(G)$ if and only if $C_{q,\tilde w}(E)=0$. Corollary. The property of being removable for $HD^{p,w}(G)$ is local, i.e. compact $E\subset G$ is removable if and only if every $x\in E$ has a compact neighbourhood, whose intersection with $G$ is removable. Theorem 3. If $G$ is an open set in $R^n$ and $C_{q,\tilde w}(R^n\setminus G)=0$. Then $C_0^\infty(G)$ is dense in $L^{\circ 1}_{q,\tilde w}(R^n)$.
Mots-clés :
Sobolev spaces
Keywords: harmonic function, Schwartz distribution, capacity of set.
Keywords: harmonic function, Schwartz distribution, capacity of set.
@article{VVGUM_2019_22_2_a3,
author = {V. A. Shlyk},
title = {Criteria of removable sets for harmonic functions in the {Sobolev} spaces $\mathbf{L^1_{p,w}}$},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {51--64},
year = {2019},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2019_22_2_a3/}
}
TY - JOUR
AU - V. A. Shlyk
TI - Criteria of removable sets for harmonic functions in the Sobolev spaces $\mathbf{L^1_{p,w}}$
JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY - 2019
SP - 51
EP - 64
VL - 22
IS - 2
UR - http://geodesic.mathdoc.fr/item/VVGUM_2019_22_2_a3/
LA - ru
ID - VVGUM_2019_22_2_a3
ER -
V. A. Shlyk. Criteria of removable sets for harmonic functions in the Sobolev spaces $\mathbf{L^1_{p,w}}$. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 22 (2019) no. 2, pp. 51-64. http://geodesic.mathdoc.fr/item/VVGUM_2019_22_2_a3/