, then the following bound is valid $$ R_{\sigma,r}(f)_{L_p}\leq C_{p,r}\left\{\omega_r^{(1)}(f;\frac{1}{\sigma})_{L_p}+\omega_r^{(2)}(f;\frac{1}{\sigma})_{L_p}\right\}, $$ where $$ \omega_r^{(1)}(f;u)_{L_p}=\sup_{|h|\leq u}\|\Delta_{x,h}^rf\|_{L_p}= \sup_{|h|\leq u}\left\|\sum_{\nu=0}^r(-1)^{r-\nu}(_\nu^r)f(x+\nu h,y)\right\|_{L_p}, $$ $$ \omega_r^{(2)}(f;u)_{L_p}=\sup_{|h|\leq u}\|\Delta_{h,y}^rf\|_{L_p}= \sup_{|h|\leq u}\left\|\sum_{\nu=0}^r(-1)^{r-\nu}(_\nu^r)f(x,y+\nu h)\right\|_{L_p}, $$ $C_{p,r}$ is a constant value that depends only on $p$ and $r$. Theorem 2. Under the assumptions of Theorem 1 with $1 the following bound is valid $$ \omega_r^{(\nu)}(f;\frac{1}{\sigma})_{L_p}\leq M_{p,r}R_{\sigma,r}(f)_{L_p}\,\,\,(\nu=1,2), $$ where the constant $M_{p,r}$ depends only on $p$ and $r$.
Mots-clés : Fourier transformation
@article{VVGUM_2019_22_1_a2,
author = {Yu. Kh. Khasanov},
title = {On approximation of the functions of two variables by some {Fourier} integrals},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {24--34},
year = {2019},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2019_22_1_a2/}
}
TY - JOUR AU - Yu. Kh. Khasanov TI - On approximation of the functions of two variables by some Fourier integrals JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2019 SP - 24 EP - 34 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/VVGUM_2019_22_1_a2/ LA - ru ID - VVGUM_2019_22_1_a2 ER -
Yu. Kh. Khasanov. On approximation of the functions of two variables by some Fourier integrals. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 22 (2019) no. 1, pp. 24-34. http://geodesic.mathdoc.fr/item/VVGUM_2019_22_1_a2/