Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_4_a5, author = {F. Sh. Shokirov}, title = {Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {64--79}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a5/} }
TY - JOUR AU - F. Sh. Shokirov TI - Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 64 EP - 79 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a5/ LA - ru ID - VVGUM_2018_21_4_a5 ER -
%0 Journal Article %A F. Sh. Shokirov %T Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 64-79 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a5/ %G ru %F VVGUM_2018_21_4_a5
F. Sh. Shokirov. Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 64-79. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a5/
[1] I. L. Bogolyubskiy, V. G. Makhankov, “Dynamics of Spherically Symmetrical Pulsons of Large Amplitude”, JETP Letters, 25:2 (1977), 120–123
[2] I. L. Bogolyubskiy, V. G. Makhankov, “Lifetime of pulsating solitons in some classical models”, JETP Letters, 24:1 (1976), 15–18
[3] V. I. Butrim V.I., B. A. Ivanov, “Specific features of relaxation of magnons in an easy-plane antiferromagnet in the framework of the sigma-model”, Low Temperature Physics, 38:12 (2012), 1410–1421 | DOI
[4] V. V. Kiselev, A. A. Raskovalov, “Nonlinear dynamics of breathers in the spiral structures of magnets”, JETP, 149:6 (2016), 1260–1269 | DOI
[5] A. Yu. Loginov, “Bound fermion states in the field of a soliton of the nonlinear $O(3)$ $\sigma$ model”, JETP Letters, 100:5 (2014), 385–389 | DOI
[6] V. G. Makhankov, “Solitons and Numerical Experiment”, FEChAYa, 14:1 (1983), 123–180 | MR
[7] Kh. Kh. Muminov, F. Sh. Shokirov, “Interactions of dynamical and topological solitons in 1D nonlinear sigma-model”, Reports of AS RT, 59:3–4 (2016), 120–126
[8] Kh. Kh. Muminov, F. Sh. Shokirov, “Isospin dynamics of topological vortices”, Reports of AS RT, 59:7–8 (2016), 320–326
[9] Kh. Kh. Muminov, F. Sh. Shokirov, Mathematical modeling of nonlinear dynamical systems of quantum field theory, ubl. House of SB RAS, Novosibirsk, 2017, 375 pp.
[10] Kh. Kh. Muminov, “Multi-dimensional dynamical topological solitons in nonlinear anisotropic sigma-model”, Reports of AS RT, 45:10 (2002), 28–36 | DOI
[11] L. Kh. Rysaeva, S. V. Suchkov, S. V. Dmitriev, “Probability of breaking of the PJ symmetry at collision between breathers with random phases in the model of a PJ symmetric planar coupler”, JETP Letters, 99:10 (2014), 664–668 | DOI
[12] A. A. Samarskiy, A. P. Mikhaylov, Principles of Mathematical Modelling: Ideas, Methods, Examples, Fizmatlit Publ., Moscow, 2001, 320 pp. | MR
[13] E. G. Fedorov, A. V. Pak, M. B. Belonenko, “Interaction of two-dimensional electromagnetic breathers in an array of carbon nanotubes”, Semiconductors/physics of the solid state, 56:10 (2014), 2044–2049
[14] F. Sh. Shokirov, “Mathematical modeling of breathers of two-dimensional $O(3)$ nonlinear sigma model”, Mathematical modeling and Computational Methods, 4:12 (2016), 3–16 | DOI
[15] M. B. Belonenko, E. V. Demushkina, N. G. Lebedev, “Soliton antiferromagnetic lattice in carbon nanotubes”, Russian Journal of Physical Chemistry B., 2:6 (2008), 964–968 | DOI
[16] P. L. Christiansen, N. Groenbech-Jensen, P. Lomdahl, B. A. Malomed, “Oscillations of Eccentric Pulsons”, Physica Scripta, 55:2 (1997), 131–134 | DOI
[17] R. Huang, Quantum Field Theory. From Operators to Path Integrals, John Wiley Sons Inc, N. Y., 1998, 416 pp. | MR
[18] A. Kudryavtsev, B. Piette, W. Zakrzewski, “Skyrmions and domain walls in $(2 + 1)$ dimensions”, Nonlinearity, 11 (1998), 783–795 | DOI | MR | Zbl
[19] V. G. Makhankov, “Dynamics of classical solutions (in non-integrable systems)”, Phys. Rep., 35:1 (1978), 1–128 | DOI | MR
[20] V. G. Makhankov, C. Kummer, A. B. Shvachka, “Many dimensional $U(1)$ solitons, their interactions, resonances and bound states”, Physica Scripta, 20 (1979), 454–461 | DOI | MR | Zbl
[21] A. A. Minzoni, N. F. Smyth, A. L. Worthy, “Evolution of two-dimensional standing and travelling breather solutions for the sine-Gordon equation”, Physica D: Nonlinear Phenomena, 189:3–4 (2004), 167–187 | DOI | MR | Zbl
[22] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley Publ. Comp, San Francisco, 1995, 842 pp. | MR
[23] B. Piette, W. J. Zakrjewsky, “Metastable stationary solutions of the radial D-dimensional sine-Gordon model”, Nonlinearity, 11:4 (1998), 1103–1110 | DOI | MR | Zbl
[24] F. Sh. Shokirov, “Numerical simulation of breathers interactions in two-dimensional $O(3)$ nonlinear sigma model”, arXiv: 1608.02178
[25] F. Sh. Shokirov, “Stationary and moving breathers in $(2 + 1)$-dimensional $O(3)$ nonlinear $\sigma$-model”, arXiv: 1605.01000
[26] J. X. Xin, “Modeling light bullets with the two-dimensional sine-Gordon equation”, Physica D: Nonlinear Phenomena, 135:3–4 (2000), 345–368 | DOI | MR | Zbl