Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 64-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

By methods of numerical simulation the processes of interaction of breather solutions in the phase space of the $(2+1)$-dimensional supersymmetric $O(3)$ nonlinear sigma model are investigated. Frontal collision models are obtained, where, depending on the dynamic parameters of the system, processes of combining the breathers, the formation of bound states (doubled breathers), collision and reflection, the passage of breathers through each other, as well as their destruction are observed. It is shown that the breathers of the $O(3)$ nonlinear sigma model in the interaction are more stable with respect to similar solutions of the sine-Gordon equation. In the presence of rotational isospin dynamics, the system of breather fields after the collision emits a certain part of the energy preserves structural stability with a characteristic periodic oscillation. Properties of longitudinal-transverse oscillations of doubled breathers and a sudden increase in the speed of breathers, reflected from each other after interaction, are revealed. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, by using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the $O(N)$ class of nonlinear sigma-models of field theory. A complex program module has been developed that implements the numerical calculation algorithm.
Keywords: nonlinear sigma model, difference scheme, stereographic projection, Bloch sphere, averaged Lagrangian
Mots-clés : sine-Gordon equation.
@article{VVGUM_2018_21_4_a5,
     author = {F. Sh. Shokirov},
     title = {Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {64--79},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a5/}
}
TY  - JOUR
AU  - F. Sh. Shokirov
TI  - Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 64
EP  - 79
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a5/
LA  - ru
ID  - VVGUM_2018_21_4_a5
ER  - 
%0 Journal Article
%A F. Sh. Shokirov
%T Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 64-79
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a5/
%G ru
%F VVGUM_2018_21_4_a5
F. Sh. Shokirov. Numerical simulation of the interactions of breather solutions of $(2+1)$-dimensional $O(3)$ nonlinear sigma model. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 64-79. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a5/

[1] I. L. Bogolyubskiy, V. G. Makhankov, “Dynamics of Spherically Symmetrical Pulsons of Large Amplitude”, JETP Letters, 25:2 (1977), 120–123

[2] I. L. Bogolyubskiy, V. G. Makhankov, “Lifetime of pulsating solitons in some classical models”, JETP Letters, 24:1 (1976), 15–18

[3] V. I. Butrim V.I., B. A. Ivanov, “Specific features of relaxation of magnons in an easy-plane antiferromagnet in the framework of the sigma-model”, Low Temperature Physics, 38:12 (2012), 1410–1421 | DOI

[4] V. V. Kiselev, A. A. Raskovalov, “Nonlinear dynamics of breathers in the spiral structures of magnets”, JETP, 149:6 (2016), 1260–1269 | DOI

[5] A. Yu. Loginov, “Bound fermion states in the field of a soliton of the nonlinear $O(3)$ $\sigma$ model”, JETP Letters, 100:5 (2014), 385–389 | DOI

[6] V. G. Makhankov, “Solitons and Numerical Experiment”, FEChAYa, 14:1 (1983), 123–180 | MR

[7] Kh. Kh. Muminov, F. Sh. Shokirov, “Interactions of dynamical and topological solitons in 1D nonlinear sigma-model”, Reports of AS RT, 59:3–4 (2016), 120–126

[8] Kh. Kh. Muminov, F. Sh. Shokirov, “Isospin dynamics of topological vortices”, Reports of AS RT, 59:7–8 (2016), 320–326

[9] Kh. Kh. Muminov, F. Sh. Shokirov, Mathematical modeling of nonlinear dynamical systems of quantum field theory, ubl. House of SB RAS, Novosibirsk, 2017, 375 pp.

[10] Kh. Kh. Muminov, “Multi-dimensional dynamical topological solitons in nonlinear anisotropic sigma-model”, Reports of AS RT, 45:10 (2002), 28–36 | DOI

[11] L. Kh. Rysaeva, S. V. Suchkov, S. V. Dmitriev, “Probability of breaking of the PJ symmetry at collision between breathers with random phases in the model of a PJ symmetric planar coupler”, JETP Letters, 99:10 (2014), 664–668 | DOI

[12] A. A. Samarskiy, A. P. Mikhaylov, Principles of Mathematical Modelling: Ideas, Methods, Examples, Fizmatlit Publ., Moscow, 2001, 320 pp. | MR

[13] E. G. Fedorov, A. V. Pak, M. B. Belonenko, “Interaction of two-dimensional electromagnetic breathers in an array of carbon nanotubes”, Semiconductors/physics of the solid state, 56:10 (2014), 2044–2049

[14] F. Sh. Shokirov, “Mathematical modeling of breathers of two-dimensional $O(3)$ nonlinear sigma model”, Mathematical modeling and Computational Methods, 4:12 (2016), 3–16 | DOI

[15] M. B. Belonenko, E. V. Demushkina, N. G. Lebedev, “Soliton antiferromagnetic lattice in carbon nanotubes”, Russian Journal of Physical Chemistry B., 2:6 (2008), 964–968 | DOI

[16] P. L. Christiansen, N. Groenbech-Jensen, P. Lomdahl, B. A. Malomed, “Oscillations of Eccentric Pulsons”, Physica Scripta, 55:2 (1997), 131–134 | DOI

[17] R. Huang, Quantum Field Theory. From Operators to Path Integrals, John Wiley Sons Inc, N. Y., 1998, 416 pp. | MR

[18] A. Kudryavtsev, B. Piette, W. Zakrzewski, “Skyrmions and domain walls in $(2 + 1)$ dimensions”, Nonlinearity, 11 (1998), 783–795 | DOI | MR | Zbl

[19] V. G. Makhankov, “Dynamics of classical solutions (in non-integrable systems)”, Phys. Rep., 35:1 (1978), 1–128 | DOI | MR

[20] V. G. Makhankov, C. Kummer, A. B. Shvachka, “Many dimensional $U(1)$ solitons, their interactions, resonances and bound states”, Physica Scripta, 20 (1979), 454–461 | DOI | MR | Zbl

[21] A. A. Minzoni, N. F. Smyth, A. L. Worthy, “Evolution of two-dimensional standing and travelling breather solutions for the sine-Gordon equation”, Physica D: Nonlinear Phenomena, 189:3–4 (2004), 167–187 | DOI | MR | Zbl

[22] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley Publ. Comp, San Francisco, 1995, 842 pp. | MR

[23] B. Piette, W. J. Zakrjewsky, “Metastable stationary solutions of the radial D-dimensional sine-Gordon model”, Nonlinearity, 11:4 (1998), 1103–1110 | DOI | MR | Zbl

[24] F. Sh. Shokirov, “Numerical simulation of breathers interactions in two-dimensional $O(3)$ nonlinear sigma model”, arXiv: 1608.02178

[25] F. Sh. Shokirov, “Stationary and moving breathers in $(2 + 1)$-dimensional $O(3)$ nonlinear $\sigma$-model”, arXiv: 1605.01000

[26] J. X. Xin, “Modeling light bullets with the two-dimensional sine-Gordon equation”, Physica D: Nonlinear Phenomena, 135:3–4 (2000), 345–368 | DOI | MR | Zbl