Multichannel nodes with identical time of service
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 57-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author investigates multichannel nodes in series with different service disciplines of service without an interruption of service in every node. Very big decrease of the virtual time of wait in inlying nodes is proved. Exact estimations of time of wait on the inlying nodes are resulted.
Keywords: identical service, multi-channel nodes in series, total time of work, time of wait, disciplines of service.
@article{VVGUM_2018_21_4_a4,
     author = {A. V. Pavlov},
     title = {Multichannel nodes with identical time of service},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {57--63},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a4/}
}
TY  - JOUR
AU  - A. V. Pavlov
TI  - Multichannel nodes with identical time of service
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 57
EP  - 63
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a4/
LA  - ru
ID  - VVGUM_2018_21_4_a4
ER  - 
%0 Journal Article
%A A. V. Pavlov
%T Multichannel nodes with identical time of service
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 57-63
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a4/
%G ru
%F VVGUM_2018_21_4_a4
A. V. Pavlov. Multichannel nodes with identical time of service. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 57-63. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a4/

[1] A. A. Borovkov, Probability Processes in Queuing Theory, Fizmatlit Publ., Moscow, 1972, 368 pp. | MR

[2] A. V. Pavlov, “Asymptotically Optimal Queue Disciplines in Heavy Traffic”, Theory of Probability and Its Applications, 35:4 (1990), 713–727 | DOI | MR

[3] A. V. Pavlov, “The Asymptotically Optimal Disciplines of Service for Some MultiChannel Networks”, Theory of Probability and Its Applications, 36:1 (1991), 170–175 | DOI | MR

[4] A. V. Pavlov, “Reliable Prognosis of the Functions in the Form of Transformations of Fourier Or Laplace”, Vestnik MGTU MIREA, 3:2 (2014), 78–85

[5] O. P. Vinogradov, “Two-Phase System with Identical Service”, Mathematical notes of the Academy of Sciences of the USSR, 33:1 (1983), 141–146 | DOI | MR | Zbl

[6] O. P. Vinogradov, “On the Output Stream and Joint Distribution of Sojourn Times in a Multiphase System with Identical Service”, Theory of Probability and Its Applications, 40:3 (1995), 646–654 | DOI | MR

[7] O. J. Boxma, “On a Tandem Queueing Model with Identical Service Times at Both Counters. I”, Advan. Appl. Probal., 11:3 (1979), 616–643 | DOI | MR | Zbl

[8] O. J. Boxma, “On a Tandem Queueing Model with Identical Service Times at Both Counters. II”, Advan. Appl. Probal., 11:3 (1979), 644–659 | DOI | MR | Zbl

[9] O. J. Boxma, Q. Deng, “Asymptotic behaviour of tandem queueing system with identical service times at both queues”, Math. meth. of oper. res., 52:2 (2000), 307–323 | DOI | MR | Zbl

[10] A. V. Pavlov, “A net with serial access and the reduction of total work for identical service”, Optimiz. and Inform. Comput., 5:2 (2017), 121–126 | DOI | MR

[11] A. V. Pavlov, “Diffusion approximations and variation of conditions of ergodicity for identical service”, Advan. Math. Scien., 52:3 (1997), 171–172 | DOI | MR | Zbl

[12] A. V. Pavlov, The disciplines of service with prior to the shortest and identical service, MGTUREA (MIREA), Moscow, 2014, 119 pp.

[13] A. V. Pavlov, “Identical service and the odd or even transform of Laplace”, Anal. and comp. meth. in probab. theor. and its appl, ACMPT2017 (Moscow University nam M.V. Lomonosov), Moscow, 2017, 31–35