Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_4_a1, author = {A. N. Shelkovoy}, title = {Spectral properties of second order differential operator determined by non-local boundary conditions}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {18--33}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a1/} }
TY - JOUR AU - A. N. Shelkovoy TI - Spectral properties of second order differential operator determined by non-local boundary conditions JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 18 EP - 33 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a1/ LA - ru ID - VVGUM_2018_21_4_a1 ER -
%0 Journal Article %A A. N. Shelkovoy %T Spectral properties of second order differential operator determined by non-local boundary conditions %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 18-33 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a1/ %G ru %F VVGUM_2018_21_4_a1
A. N. Shelkovoy. Spectral properties of second order differential operator determined by non-local boundary conditions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 18-33. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a1/
[1] N. K. Bari, Trigonometric Series, Fizmatgiz Publ., Moscow, 1961, 936 pp.
[2] A. G. Baskakov, Harmonic Analysis of Linear Operators, Izd-vo VGU Publ., Voronezh, 1987, 165 pp. | MR
[3] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The Method of Similar Operators in the Spectral Analysis of Non-Self-Adjoint Dirac Operators with Non-Smooth Potentials”, Izvestiya: Mathematics, 75:3 (2011), 3–28 | DOI | MR | Zbl
[4] A. G. Baskakov, D. M. Polyakov, “The Method of Similar Operators in the Spectral Analysis of the Hill Operator with Nonsmooth Potential”, Sbornik: Mathematics, 208:1 (2017), 3–47 | DOI | MR | Zbl
[5] A. G. Baskakov, T. K. Katsaran, “Spectral Analysis of Integro-Differential Operators with Nonlocal Boundary Conditions”, Differential Equations, 24:8 (1988), 1424–1433 | MR | Zbl
[6] A. G. Baskakov, “Spectral Analysis with Respect to Finite-Dimensional Perturbations of Spectral Operators”, Russian Mathematics, 1991, no. 1, 3–11 | Zbl
[7] A. G. Baskakov, “A Theorem on Splitting an Operator, and Some Related Questions in the Analytic Theory of Perturbations”, Mathematics of the USSR – Izvestiya, 50:3 (1986), 435–457 | MR
[8] M. Kh. Beshtokov, “Difference Method for Solving a Nonlocal Boundary Value Problem for a Degenerating Third-Order Pseudo-Parabolic Equation with Variable Coefficients”, Computational Math. and Mathematical Physics, 56:10 (2016), 1780–1794 | DOI | MR | Zbl
[9] D. G. Gordeziani, G. A. Avalishvili, “A Numerical Method for Solving One Nonlocal Boundary Value Problem for a Third-Order Hyperbolic Equation”, Mathematical Models and Computer Simulations, 12:1 (2000), 94–103 | MR | Zbl
[10] I. Ts. Gokhberg , M. G. Kreyn, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Nauka Publ., Moscow, 1965, 448 pp.
[11] N. Danford, D. T. Shvarts, Linear Operators, v. 2, Spectral theory. Self adjoint operators in Hilbert space, Mir Publ., Moscow, 1966, 1063 pp.
[12] L. S. Pulkina, “A Nonlocal Problem for a Hyperbolic Equation with Integral Conditions of the 1st Kind with Time-Dependent Kernels”, Russian Mathematics, 2012, no. 10, 32–44 | Zbl
[13] Yu. T. Silchenko, “On an Estimate for the Resolvent of a Second-Order Differential Operator with Irregular Boundary Conditions”, Russian Mathematics, 2000, no. 2, 65–68 | Zbl
[14] E. L. Ulyanova, “On the Spectral Properties of Relatively Finite-Dimensional Perturbations of Selfadjoint Operators”, Russian Mathematics, 1997, no. 10, 75–78 | MR | Zbl
[15] E. L. Ulyanova, Spectral Analysis of the Normal Operators with Perturbed Relatively Finite-Dimensional., Cand. Phys. and Math. Sci. Diss., Voronezh, 1998, 100 pp.
[16] A. A. Shkalikov, “On Basis Property of Eigenfunctions of Ordinary Differential Operators with Integral Boundary Conditions”, Moscow University Mathematics Bulletin, 1982, no. 6, 41–51 | MR
[17] T. K. Yuldashev, “Nonlinear Integro-Differential Equation of Pseudoparabolic Type With Nonlocal Integral Condition”, Science Journal of Volgograd state university. Mathematics. Physics, 2016, no. 1, 11–23 | DOI
[18] T. K. Yuldashev, “Nonlocal Boundary Value Problem for a Nonhomogeneous Pseudoparabolic-Type Integro-Differential Equation With Degenerate Kernel”, Science Journal of Volgograd State University. Mathematics. Physics, 2017, no. 1, 42–54 | DOI