Spectral properties of second order differential operator determined by non-local boundary conditions
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 18-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we study the spectral properties of the operator acting in the Hilbert space $L_2[0,2\pi]$ defined by the differential expression $\mathcal{L}y=-\ddot {y}+y$ and nonlocal boundary conditions $$ y(0)=y(2\pi)+\int\limits_0^{2\pi} a_0(t)y(t)dt,\quad \dot {y}(0)=\dot {y}(2\pi)+\int\limits_0^{2\pi} a_1(t)y(t)dt. $$ Here $a_0$ and $a_1$ are functions from $L_2[0,2\pi]$. To investigate spectrum of the operator, $\mathcal{L}$ is used adjoint of the operator $\mathcal{L}^*$ one defined by the differential expression $(\mathcal{L}^{*}x)(t) = (Ax)(t) - (Bx)(t)$ and boundary conditions $ x(0) = x(2\pi), ~ \dot {x}(0) = \dot {x}(2\pi), $ with $A$ generated by the differential expression $Ax = -\ddot {x} + x$ with the domain $$D(A) = \{x\in L_2[0,2\pi] : x, ~ \dot {x} \in C[0,2\pi], ~ \ddot {x} \in L_2[0,2\pi],$$ $$x(0) = x(2\pi), ~ \dot {x}(0) = \dot {x}(2\pi)\},$$ and $(Bx)(t) = \dot {x}(2\pi)a_0(t)-x(2\pi)a_1(t), ~ t\in [0,2\pi], ~ x\in D(A)$. As a method of studying the spectral properties of the operator $A - B$ the similar operators method serves. One of the main results is the following theorem. Theorem 3. Let functions $a_0$ and $a_1$ of bounded variation on a segment $[0,2\pi]$ and sequences $\gamma_1, \gamma_2\colon \mathbb{N}\to \mathbb{R}_+ = [0,\infty)$ defined by formulas: $$ \gamma_1(n) = \Biggl(\frac{\alpha_0^{2}n^{4} + 1}{n^6}~+~\frac{4}{n^2}\sum\limits_{\substack{m\ge 1 \\ m\ne n}}\frac{n^4 + m^4}{m^2|n^2 -m^2|^2}\Biggr)^{1/2} \infty, $$ $$ \gamma_2(n) = 2\max\Biggl\{\frac{1}{2n - 1}; \frac{|a_0^0|}{4n^2} + \sum\limits_{\substack{m\ge 1 \\ m\ne n}}\frac{1}{|n^2 -m^2|}\Biggr\} \infty $$ and $$ \alpha_0 = \sqrt{\frac{|a_0^0|^2 + |a_1^0|^2}{2}},\quad a_0^0 = \frac{1}{\pi}\int\limits_0^{2\pi}a_0(t)dt, \quad a_1^0 = \frac{1}{\pi}\int\limits_0^{2\pi}a_1(t)dt. $$ Let conditions $\lim\limits_{n\to \infty} \gamma_1(n) = 0, \lim\limits_{n\to \infty} \gamma_2(n) = 0$ hold true. Then the spectrum $\sigma(A - B)$ of operator $A - B$ can be represented as $\sigma(A - B) = \bigcup\limits_{n \ge 1}\widetilde {\sigma}_n$ where $\widetilde {\sigma}_n, ~ n \ge 1$, — no more than set of two points. Provided that the estimates: $$\Biggl|\widetilde{\lambda}_{n} - (n^2 + 1) ~ + ~ \frac{(-1)^n}{2}\Biggl| ~ \le ~ c\cdot\frac{\ln{n}}{n},$$ where $\widetilde{\lambda}_n$ — the weighted mean of eigenvalues in $\widetilde {\sigma}_n$. Equally satisfy estimates: $$\Biggl(\int\limits_0^{2\pi}\Biggl|(\widetilde{P}_{n}x)(t) - \frac{1}{\pi}\Biggl(\int\limits_0^{2\pi}x(t)\cos{nt}dt\Biggr)\cos{nt} ~ - $$ $$ - ~ \frac{1}{\pi}\Biggl(\int\limits_0^{2\pi}x(t)\sin{nt}dt\Biggr)\sin{nt}\Biggr|^{2}dt\Biggr)^{1/2} \le c(n)\gamma_1(n), ~ n \ge 1,$$ for some sequence c>0 where $\lim\limits_{n\to \infty} c(n) = 1$. Here $\widetilde{P}_{n}$ is the Riesz projector constructed by spectral of set $\widetilde{\sigma}_{n}$ of operator $A - B$.
Keywords: eigenvalues, operator spectrum, differential operator of second order operator, spectrum asymptotic, similar operators method.
@article{VVGUM_2018_21_4_a1,
     author = {A. N. Shelkovoy},
     title = {Spectral properties of second order differential operator determined by non-local boundary conditions},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a1/}
}
TY  - JOUR
AU  - A. N. Shelkovoy
TI  - Spectral properties of second order differential operator determined by non-local boundary conditions
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 18
EP  - 33
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a1/
LA  - ru
ID  - VVGUM_2018_21_4_a1
ER  - 
%0 Journal Article
%A A. N. Shelkovoy
%T Spectral properties of second order differential operator determined by non-local boundary conditions
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 18-33
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a1/
%G ru
%F VVGUM_2018_21_4_a1
A. N. Shelkovoy. Spectral properties of second order differential operator determined by non-local boundary conditions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 18-33. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a1/

[1] N. K. Bari, Trigonometric Series, Fizmatgiz Publ., Moscow, 1961, 936 pp.

[2] A. G. Baskakov, Harmonic Analysis of Linear Operators, Izd-vo VGU Publ., Voronezh, 1987, 165 pp. | MR

[3] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The Method of Similar Operators in the Spectral Analysis of Non-Self-Adjoint Dirac Operators with Non-Smooth Potentials”, Izvestiya: Mathematics, 75:3 (2011), 3–28 | DOI | MR | Zbl

[4] A. G. Baskakov, D. M. Polyakov, “The Method of Similar Operators in the Spectral Analysis of the Hill Operator with Nonsmooth Potential”, Sbornik: Mathematics, 208:1 (2017), 3–47 | DOI | MR | Zbl

[5] A. G. Baskakov, T. K. Katsaran, “Spectral Analysis of Integro-Differential Operators with Nonlocal Boundary Conditions”, Differential Equations, 24:8 (1988), 1424–1433 | MR | Zbl

[6] A. G. Baskakov, “Spectral Analysis with Respect to Finite-Dimensional Perturbations of Spectral Operators”, Russian Mathematics, 1991, no. 1, 3–11 | Zbl

[7] A. G. Baskakov, “A Theorem on Splitting an Operator, and Some Related Questions in the Analytic Theory of Perturbations”, Mathematics of the USSR – Izvestiya, 50:3 (1986), 435–457 | MR

[8] M. Kh. Beshtokov, “Difference Method for Solving a Nonlocal Boundary Value Problem for a Degenerating Third-Order Pseudo-Parabolic Equation with Variable Coefficients”, Computational Math. and Mathematical Physics, 56:10 (2016), 1780–1794 | DOI | MR | Zbl

[9] D. G. Gordeziani, G. A. Avalishvili, “A Numerical Method for Solving One Nonlocal Boundary Value Problem for a Third-Order Hyperbolic Equation”, Mathematical Models and Computer Simulations, 12:1 (2000), 94–103 | MR | Zbl

[10] I. Ts. Gokhberg , M. G. Kreyn, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Nauka Publ., Moscow, 1965, 448 pp.

[11] N. Danford, D. T. Shvarts, Linear Operators, v. 2, Spectral theory. Self adjoint operators in Hilbert space, Mir Publ., Moscow, 1966, 1063 pp.

[12] L. S. Pulkina, “A Nonlocal Problem for a Hyperbolic Equation with Integral Conditions of the 1st Kind with Time-Dependent Kernels”, Russian Mathematics, 2012, no. 10, 32–44 | Zbl

[13] Yu. T. Silchenko, “On an Estimate for the Resolvent of a Second-Order Differential Operator with Irregular Boundary Conditions”, Russian Mathematics, 2000, no. 2, 65–68 | Zbl

[14] E. L. Ulyanova, “On the Spectral Properties of Relatively Finite-Dimensional Perturbations of Selfadjoint Operators”, Russian Mathematics, 1997, no. 10, 75–78 | MR | Zbl

[15] E. L. Ulyanova, Spectral Analysis of the Normal Operators with Perturbed Relatively Finite-Dimensional., Cand. Phys. and Math. Sci. Diss., Voronezh, 1998, 100 pp.

[16] A. A. Shkalikov, “On Basis Property of Eigenfunctions of Ordinary Differential Operators with Integral Boundary Conditions”, Moscow University Mathematics Bulletin, 1982, no. 6, 41–51 | MR

[17] T. K. Yuldashev, “Nonlinear Integro-Differential Equation of Pseudoparabolic Type With Nonlocal Integral Condition”, Science Journal of Volgograd state university. Mathematics. Physics, 2016, no. 1, 11–23 | DOI

[18] T. K. Yuldashev, “Nonlocal Boundary Value Problem for a Nonhomogeneous Pseudoparabolic-Type Integro-Differential Equation With Degenerate Kernel”, Science Journal of Volgograd State University. Mathematics. Physics, 2017, no. 1, 42–54 | DOI