Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_4_a0, author = {S. A. Aldashev}, title = {The criterion of unique solvability of the {Dirichlet} spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {5--17}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a0/} }
TY - JOUR AU - S. A. Aldashev TI - The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 5 EP - 17 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a0/ LA - ru ID - VVGUM_2018_21_4_a0 ER -
%0 Journal Article %A S. A. Aldashev %T The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 5-17 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a0/ %G ru %F VVGUM_2018_21_4_a0
S. A. Aldashev. The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 5-17. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a0/
[1] S. A. Aldashev, “Well-Posedness of the Dirichlet Problem in a Cylindrical Domain for the Multidimensional Lavrentiev – Bitsadze Equation”, Izvestiya NAN RK. Seriya fiziko-matematicheskaya, 3:295 (2014), 136–142
[2] S. A. Aldashev, “Well-Posedness of the Dirichlet Problem in a Cylindrical Domain for One Class of Multidimensional Hyperbolic-Elliptic Equations”, Journal of Mathematical Sciences, 16:4 (2013), 435–451
[3] S. A. Aldashev, “A Criterion for the Unique Solvability of the Dirichlet Spectral Problem in a Cylindrical Domain for a Multidimensional Lavrent'ev – Bitsadze Equation”, Russian Mathematics, 2011, no. 4, 3–7 | Zbl
[4] S. A. Aldashev, “On the Darboux Problems for a Class of Many-Dimensional Hyperbolic Equations”, Differential Equations, 34:1 (1998), 64–68 | MR | Zbl
[5] S. A. Aldashev, “The Dirichlet Spectral Problem in a Cylindrical Domain for a Multidimensional Lavrent'ev – Bitsadze Equation”, Izvestiya NAN RK. Seriya fiziko-matematicheskaya, 2010, no. 6, 3–6
[6] G. Beytmen, A. Erdeyi, Higher Transcendental Functions, v. 2, Nauka Publ., Moscow, 1974, 295 pp.
[7] T. Sh. Kalmenov, On Regular Boundary Value Problems and Their Spectrum for Hyperbolic and Mixed Type Equations, Doctor Dissertation, Moscow, 1982, 28 pp.
[8] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka Publ., Moscow, 1976, 543 pp. | MR
[9] E. Kamke, Handbook of Ordinary Differential Equations, Nauka Publ., Moscow, 1965, 703 pp.
[10] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Fizmatgiz Publ., Moscow, 1962, 254 pp. | MR
[11] E. I. Moiseev, Equations of Mixed Type with Spectral Parameter, Izd-vo MGU Publ., Moscow, 1998, 150 pp.
[12] S. M. Ponomarev, “On the Eigenvalue Problem for the Lavrentiev – Bitsadze Equation”, Doklady Mathematics, 1977, 39–40 | Zbl
[13] K. B. Sabitov, “On the Tricomi Problem of the Lavrentiev – Bitsadze Equation with a Spectral Parameter”, Differential Equations, 22:11 (1986), 1977–1984 | MR | Zbl
[14] M. S. Salakhitdinov, A. K. Urinov, Boundary Value Problems for a Mixed-Type Equation with a Spectral Parameter, FAN Publ., Tashkent, 1997, 165 pp. | MR
[15] A. N. Tikhonov, Equations of Mathematical Physics, Nauka Publ., Moscow, 1966, 724 pp. | MR