The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multidimensional hyperbolic-elliptic equations describe important physical, astronomical, and geometric processes. It is known that the oscillations of elastic membranes in space according to the Hamilton principle can be modeled by multidimensional hyperbolic equations. Assuming that the membrane is in equilibrium in the bending position, Hamilton's principle also yields multidimensional elliptic equations. Consequently, oscillations of elastic membranes in space can be modeled by multidimensional hyperbolic-elliptic equations. The author has previously studied the Dirichlet problem for multidimensional hyperbolic-elliptic equations, where the unique solvability of this problem is shown, essentially depends on the height of the entire cylindrical region under consideration. Two-dimensional spectral problems for equations of the hyperbolic-elliptic type are intensively studied, however, as far as is known, their multidimensional analogs are poorly studied. In this paper, we obtain a criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for a class of multidimensional hyperbolicelliptic equations.
Keywords: criterion, solvability, spectral problem
Mots-clés : equations, multidimensional domain.
@article{VVGUM_2018_21_4_a0,
     author = {S. A. Aldashev},
     title = {The criterion of unique solvability of the {Dirichlet} spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 5
EP  - 17
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a0/
LA  - ru
ID  - VVGUM_2018_21_4_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 5-17
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a0/
%G ru
%F VVGUM_2018_21_4_a0
S. A. Aldashev. The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 4, pp. 5-17. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_4_a0/

[1] S. A. Aldashev, “Well-Posedness of the Dirichlet Problem in a Cylindrical Domain for the Multidimensional Lavrentiev – Bitsadze Equation”, Izvestiya NAN RK. Seriya fiziko-matematicheskaya, 3:295 (2014), 136–142

[2] S. A. Aldashev, “Well-Posedness of the Dirichlet Problem in a Cylindrical Domain for One Class of Multidimensional Hyperbolic-Elliptic Equations”, Journal of Mathematical Sciences, 16:4 (2013), 435–451

[3] S. A. Aldashev, “A Criterion for the Unique Solvability of the Dirichlet Spectral Problem in a Cylindrical Domain for a Multidimensional Lavrent'ev – Bitsadze Equation”, Russian Mathematics, 2011, no. 4, 3–7 | Zbl

[4] S. A. Aldashev, “On the Darboux Problems for a Class of Many-Dimensional Hyperbolic Equations”, Differential Equations, 34:1 (1998), 64–68 | MR | Zbl

[5] S. A. Aldashev, “The Dirichlet Spectral Problem in a Cylindrical Domain for a Multidimensional Lavrent'ev – Bitsadze Equation”, Izvestiya NAN RK. Seriya fiziko-matematicheskaya, 2010, no. 6, 3–6

[6] G. Beytmen, A. Erdeyi, Higher Transcendental Functions, v. 2, Nauka Publ., Moscow, 1974, 295 pp.

[7] T. Sh. Kalmenov, On Regular Boundary Value Problems and Their Spectrum for Hyperbolic and Mixed Type Equations, Doctor Dissertation, Moscow, 1982, 28 pp.

[8] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka Publ., Moscow, 1976, 543 pp. | MR

[9] E. Kamke, Handbook of Ordinary Differential Equations, Nauka Publ., Moscow, 1965, 703 pp.

[10] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Fizmatgiz Publ., Moscow, 1962, 254 pp. | MR

[11] E. I. Moiseev, Equations of Mixed Type with Spectral Parameter, Izd-vo MGU Publ., Moscow, 1998, 150 pp.

[12] S. M. Ponomarev, “On the Eigenvalue Problem for the Lavrentiev – Bitsadze Equation”, Doklady Mathematics, 1977, 39–40 | Zbl

[13] K. B. Sabitov, “On the Tricomi Problem of the Lavrentiev – Bitsadze Equation with a Spectral Parameter”, Differential Equations, 22:11 (1986), 1977–1984 | MR | Zbl

[14] M. S. Salakhitdinov, A. K. Urinov, Boundary Value Problems for a Mixed-Type Equation with a Spectral Parameter, FAN Publ., Tashkent, 1997, 165 pp. | MR

[15] A. N. Tikhonov, Equations of Mathematical Physics, Nauka Publ., Moscow, 1966, 724 pp. | MR