Accelerated calculation of integrals in the theory of non-thermal electron transfer
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 3, pp. 48-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we’ve carried out a modification of the expression for calculating the probability of non-thermal electron transfer in a two-level system obtained in the framework of the nonstationary second-order perturbation theory for electron interaction. This expression takes into account the reorganization of the environment (Debye model) and high-frequency intramolecular vibrational modes (quantum mechanical description). Since the “Debye” part is characterized by slow relaxation times, which significantly exceed the period of intramolecular vibrations, the “quantum” part will be a rapidly oscillating function included in the integral. As a result, computing two-dimensional integral using simple grid methods may require significant computational resources. To speed up the calculation of this integral, we propose a Gauss quadrature formula. It is shown that, in the high-temperature limit, the quadrature formula can be successfully applied in the theory of non-thermal electron transfer and increases the calculation speed of the integral by two orders of magnitude.
Keywords: electron transfer, nonstationary perturbation theory, intramolecular high-frequency modes.
Mots-clés : quadrature formula
@article{VVGUM_2018_21_3_a4,
     author = {R. G. Fedunov and I. P. Yermolenko},
     title = {Accelerated calculation of integrals in the theory of non-thermal electron transfer},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a4/}
}
TY  - JOUR
AU  - R. G. Fedunov
AU  - I. P. Yermolenko
TI  - Accelerated calculation of integrals in the theory of non-thermal electron transfer
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 48
EP  - 57
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a4/
LA  - ru
ID  - VVGUM_2018_21_3_a4
ER  - 
%0 Journal Article
%A R. G. Fedunov
%A I. P. Yermolenko
%T Accelerated calculation of integrals in the theory of non-thermal electron transfer
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 48-57
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a4/
%G ru
%F VVGUM_2018_21_3_a4
R. G. Fedunov; I. P. Yermolenko. Accelerated calculation of integrals in the theory of non-thermal electron transfer. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 3, pp. 48-57. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a4/

[1] A. M. Berezhkovskiy, Yu. A. Dyakov, V. Yu. Zitserman, “The Qualitative Theory of the Elementary Act of the Reaction in Relaxing Solvents”, Russian Journal of Physical Chemistry A, 73 (1999), 349–350

[2] E. S. Medvedev, V. I. Osherov, Theory of Nonradiative Transitions in Polyatomic Molecules, Nauka Publ., Moscow, 1983, 280 pp.

[3] G. Frelikh, The Theory of Dielectrics: Dielectric Permeability and Dielectric Losses, Izd-vo inostr. lit-ry Publ., Moscow, 1960, 251 pp.

[4] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, New York, 1965, 1041 pp.

[5] S. Chakravarty, A. J. Leggett, “Dynamics of the Two-State System with Ohmic Dissipation”, Phys. Rev. Lett., 52:1, no. 2 (1984), 5 | DOI

[6] S. Cho, M. Leggett, “Nonequilibrium photoinduced electron transfer”, J. Chem. Phys., 103:2 (1995), 595–606 | DOI

[7] R. D. Coalson, D. G. Evans, A. Nitzan, “A nonequilibrium golden rule formula for electronic state populations in nonadiabatically coupled systems”, PJ. Chem. Phys, 101:1 (1994), 436–437. | DOI

[8] R. R. Dogonadze, A. M. Kuznetsov, J. A. Ulstrup, “A theory of simple electrochemical processes in solid solutions”, J. Electroanal. Chem., 79:2 (1977), 267–272 | DOI

[9] D. G. Evans, R. D. Coalson, Y. Dakhnovskii, “Induced oscillations in an electron transfer reaction in the presence of a bichromatic electromagnetic field”, J. Chem. Phys., 104:6 (1996), 2287–2288 | DOI

[10] D. G. Evans, R. D. Coalson, “Incorporating backflow into a relaxation theory treatment of the dynamics of nonequilibrium nonadiabatic transition processes”, J. Chem. Phys., 102:14 (1995), 5658–5658 | DOI

[11] K. Tominaga, D. A. V. Kliner, A. E. Johnson, N. E. Levinger, P. F. Barbara, “Femtosecond experiments and absolute rate calculations on intervalence electron transfer of mixed?valence compounds”, J. Chem. Phys., 98:2 (1993), 1228–1229 | DOI

[12] S. V. Feskov, V. N. Ionkin, A. I. Ivanov, “Effect of High-Frequency Modes and Hot Transitions on Free Energy Gap Dependence of Charge Recombination”, J. Phys. Chem., 110:4 (2006), 11919–11925 | DOI

[13] J. T. Hynes, “Outer-sphere electron-transfer reactions and frequency-dependent friction”, J. Phys. Chem., 90:16 (1986), 3701–3706 | DOI

[14] A. I. Ivanov, V. V. Potovoi, “Theory of non-thermal electron transfer”, Chemical Physics, 247:2 (1999), 245–259 | DOI

[15] R. Kubo, Y. Toyozava, “Application of the method of generating function to radiative and non-radiative transitions of a trapped electron in cristall”, Prog. Theor. Phys., 13:2 (1995), 160–182 | DOI

[16] R. A. Markus, N. Sutin, “Electron Transfers in Chemistry and Biology”, Biochim. Biophys. Acta., 811:3 (1985), 265–322 | DOI

[17] M. L. Horng, J. A. Gardecki, A. Papazyan, M. Maroncelli, “Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited”, J. Phys. Chem., 99:48 (1995), 17311–17337 | DOI

[18] G. Tao, R. M. Stratt, “The molecular origins of nonlinear response in solute energy relaxation: The example of high-energy rotational relaxation”, J. Chem. Phys., 125:11 (2006), 114501–114502 | DOI

[19] J. Tank, “Effects of a fluctuating electronic coupling matrix element on electron transfer rate”, J. Chem. Phys., 98:8 (1993), 6263–6264 | DOI

[20] J. Tank, S. H. Lin, “Oscillations and non-exponential decays in electron-transfer reactions”, Chem. Phys. Lett., 254:1, no. 2 (1996), 6–12 | DOI

[21] J. Ulstrup, J. Jortner, “The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions”, J. Chem. Phys., 63:10 (1975), 4358–4359 | DOI

[22] X. Zhao, J. L. McHale, “Probing the molecular basis for solvent-induced dephasing using resonance Raman spectroscopy: Betaine-30 in CH3OH, CH3OD, and CD3OD”, Chemical Physics Letters, 378:5 (2003), 582–588 | DOI

[23] R. Zwanzig, “Dielectric Friction on a Moving Ion”, J. Chem. Phys., 38:7 (1963), 1603–1603 | DOI