Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_3_a2, author = {A. A. Klyachin}, title = {Construction of a triangular gridfor regions bounded by closed simple curves}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {31--38}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a2/} }
TY - JOUR AU - A. A. Klyachin TI - Construction of a triangular gridfor regions bounded by closed simple curves JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 31 EP - 38 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a2/ LA - ru ID - VVGUM_2018_21_3_a2 ER -
A. A. Klyachin. Construction of a triangular gridfor regions bounded by closed simple curves. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 3, pp. 31-38. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a2/
[1] N. V. Baydakova, “Influence of Smoothness on the Error of Approximation of Derivatives under Local Interpolation on Triangulations”, Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 17:3 (2011), 83–97
[2] N. V. Baydakova, “Upper Estimates for the Error of Approximation of Derivatives in a Finite Element of Hsieh–Clough–Tocher Type”, Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 18:4 (2012), 80–89
[3] N. V. Baydakova, “New Estimates of the Error of Approximation of Derivatives of the Interpolation Functions of Polynomials of the Third Degree on a Triangle”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1, no. 2 (2013), 15–19
[4] M. P. Galanin, I. A. Shcheglov, “Development and Implementation of Three-Dimencion Triangulation Algorythms of Complex Spacial Domains: Direct Methods”, Keldysh Institute preprints, 2006, 010, 32 pp.
[5] E. G. Grigoryeva, V. A. Klyachin, A. A. Klyachin, “Universal Software for Slving Multidimensional Variational Problems”, Science Journal of Volgograd State University. Mathematics. Physics, 2:39 (2017), 39–55 | DOI
[6] A. A. Klyachin, “The Construction of the Triangulation Plane Areas Grinding Method”, Science Journal of Volgograd State University. Mathematics. Physics, 2:39 (2017), 18–28 | DOI
[7] V. A. Klyachin, A. A. Shirokiy, “The Delaunay Triangulation for Multidimensional Surfaces”, Vestnik of Samara State University, 78:4 (2010), 51–55
[8] V. A. Klyachin, A. A. Shirokiy, “The Delaunay Triangulation for Multidimensional Surfaces and Its Approximative Properties”, Russian Mathematics, 2012, no. 1, 31–39
[9] V. A. Klyachin, D. V. Shurkaeva, Saratov University News. New Series. Series Mathematics. Mechanics. Informatics, 15:2 (2015), 151–160
[10] N. V. Latypova, “The Error of Interpolation Polynomials of the Sixth Degree on a Triangle”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2003, 3–10
[11] Yu. V. Matveeva, “On Hermite Interpolation by Third-Degree Polynomials on a Triangle Using Mixed Derivative”, Saratov University News. New Series. Series Mathematics. Mechanics. Informatics, 7:1 (2007), 23–27
[12] Yu. N. Subbotin, “Multidimensional Piecewise Polynomial Interpolation”, Metody approksimatsii i interpolyatsii, 1981, 148–153, Izd-vo VTsN Publ., Novosibirsk
[13] Yu. N. Subbotin, “The Dependence of Estimates of a Multidimensional Piecewise Polynomial Approximation on the Geometric Characteristics of a Triangulation”, Proceedings of the Steklov Institute of Mathematics, 189, 1989, 117–137
[14] Yu. N. Subbotin, “Dependence of the Estimates of Approximation by Interpolation Polynomials of the Fifth Degree of the Geometrical Characteristics of the Triangle”, Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2 (1992), 110–119
[15] I. Babuska, A. K. Aziz, “On the angle condition in the finite element method”, SIAM J. Numer. Anal., 13:2 (1976), 214–226 | DOI