Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_3_a0, author = {V. V. Denisenko and V. M. Deundyak}, title = {The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {5--18}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a0/} }
TY - JOUR AU - V. V. Denisenko AU - V. M. Deundyak TI - The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 5 EP - 18 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a0/ LA - ru ID - VVGUM_2018_21_3_a0 ER -
%0 Journal Article %A V. V. Denisenko %A V. M. Deundyak %T The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 5-18 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a0/ %G ru %F VVGUM_2018_21_3_a0
V. V. Denisenko; V. M. Deundyak. The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 3, pp. 5-18. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a0/
[1] O. G. Avsyankin, “On the C*-algebra generated by multidimensional integral operators with homogeneous kernels and multiplicative shift operators”, Doklady Mathematics, 419:6 (2008), 727–728
[2] O. V. Besov, V. P. Ilin, S. M. Nikolskiy, Integral representations of functions and imbedding theorems, Nauka Publ., Moscow, 1975, 480 pp.
[3] V. V. Denisenko, V. M. Deundyak, “On the boundedness of integral operators with homogeneous kernels on the Heisenberg group with Koranyi norm”, Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Estestvennye nauki, 3:1 (2017), 21–27
[4] V. M. Deundyak, “Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating Coefficient”, Mathematical Notes, 87:5 (2010), 704–720 | DOI
[5] V. M. Deundyak, E. I. Miroshnikova, “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients”, Russian Mathematics, 2012, no. 7, 3–17
[6] S. G. Kreyn, Yu. I. Petunin, E. M. Semenov, Interpolation of Linear Operator, Nauka Publ., Moscow, 1978, 400 pp.
[7] L. A. Lyusternik, V. I. Sobolev, Brief Course of Functional Analysis, Nauka Publ., Moscow, 1982, 270 pp.
[8] I. B. Simonenko, “A new general method of investigating linear operator equations of singular integral equation type. II”, Izvestiya: Mathematics, 29:4 (1965), 757–782
[9] I. B. Simonenko, “Operators of convolution type in cones”, Sbornik: Mathematics, 74:2 (1967), 298–313
[10] I. B. Simonenko, The local method in the theory of shift-invariant operators and their envelope, Izd-vo TsVVR Publ., Rostov-on-Don, 2007, 120 pp.
[11] L. Capogna, D. Danielli, S. D. Pauls, J. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhauser, Basel, 2007, 224 pp.
[12] G. S. Chirikjian, A. B. Kyatkin, Engineering applications of noncommutative harmonic analysis: with emphasis on rotation and motion groups, CRC Press, Boca Raton, 2001, 698 pp.
[13] V. M. Deundyak, “Convolution Operators with Weakly Oscillating Coeffcients in Hilbert Moduli on Groups and Applications”, Journal of Mathematical Sciences, 208:1 (2015), 100–108 | DOI
[14] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhauser, Boston, 2001, 642 pp.
[15] V. V. Kisil, “Symmetry, geometry, and quantization with hypercomplex numbers”, Geometry, Integrability and Quantization, 18 (2017), 11–76 | DOI
[16] S. G. Krantz, Explorations in harmonic analysis: with applications to complex function theory and the Heisenberg group, Birkhauser, Boston, 2009, 360 pp.