The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 3, pp. 5-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{C}^n$ be a $n$–dimensional complex coordinate space and let $\mathbb{R}$ be a set of real numbers. The Heisenberg group is a set $\mathbb{H}_{n} = \mathbb{C}^n \times \mathbb{R}$ with the binary operation \begin{equation*} (z,a) (w, b) = (z + w, a + b + 2 \mathrm{Im}(z \cdot w)), \quad (z,a), (w,b) \in \mathbb{H}_n. \end{equation*} The group under consideration is endowed with a family of dilations \begin{equation*} \delta_r(z,a) = (r z, r^2 a), \quad r \in \mathbb{R}_{+}, \quad (z,a) \in \mathbb{H}_n, \end{equation*} and is equipped with the Koranyi norm \begin{equation*} \lVert (z,a) \rVert = \left(\lvert z \rvert ^4 + a^2 \right)^{\frac{1}{4}}, \quad (z,a) \in \mathbb{H}_n. \end{equation*} This norm allows us to define the notion of the unit ball on the Heisenberg group \begin{equation*} \mathbb{S}_{n} = \left\{ x \in \mathbb{H}_{n} : \: \lVert x \rVert = 1 \right\}. \end{equation*} The transformation of Cartesian coordinates on the Heisenberg group $x \in \mathbb{H}_n \setminus \{ (\mathbf{0}, 0) \}$ to spherical coordinates $(r,s) \in \mathbb{R}_+ \times \mathbb{S}_n$ is defined by \begin{equation*} r = \lVert x \rVert, \quad s = \delta_{\lVert x \rVert}^{-1}(x). \end{equation*} The function $k: \mathbb{H}_{n} \times \mathbb{H}_{n} \to \mathbb{C}$ is said to be homogeneous of degree $m$ if it satisfies the condition of homogeneity \begin{equation*} \forall \gamma \in \mathbb{R}_{+}, \quad \forall x,y \in \mathbb{H}_{n}: \quad k(\delta_{\gamma} (x), \delta_{\gamma} (y)) = \gamma^{m} k(x,y). \end{equation*} This paper is concerned with the study of linear integral operators on the Heisenberg group of the form \begin{equation*} (K_{k} \, f)(x) = \int\limits_{\mathbb{H}_n} k(x,y) \, f(y) \, dy, \end{equation*} where function $k$ is an element of the special Banach space $\mathcal{M}_{p}(\mathbb{H}_n)$ of homogeneous $(-2n-2)$ degree functions. It is claimed that operator under consideration is bounded in the space $L_p(\mathbb{H}_n)$, where $1 p \infty$. A new class $\mathcal{C}_{p}(\mathbb{H}_n) \subset \mathcal{M}_{p}(\mathbb{H}_n)$ of homogeneous kernels of compact type is introduced. The main object of the research is the unitary Banach algebra $\mathfrak{V}_{p}^+(\mathbb{H}_n)$ generated by integral operators with $\mathcal{C}_{p}(\mathbb{H}_n)$ kernels. It should be pointed out that spherical coordinate system on the Heisenberg group plays a significant role in construction of the $\mathcal{C}_{p}(\mathbb{H}_n)$ class. The convolutional representation of the unitary Banach algebra $\mathfrak{V}_{p}^+(\mathbb{H}_n)$ is constructed using the technique of tensor products. This representation makes it possible to define the symbol for integral operators in $\mathfrak{V}_{p}^+(\mathbb{H}_n)$ algebra and formulate the necessary and sufficient conditions for invertibility of these operators in terms of their symbol.
Keywords: Heisenberg group, linear integral operators, operators with homogeneous kernels, convolutional representation, symbolic calculus, invertibility of operators.
@article{VVGUM_2018_21_3_a0,
     author = {V. V. Denisenko and V. M. Deundyak},
     title = {The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a0/}
}
TY  - JOUR
AU  - V. V. Denisenko
AU  - V. M. Deundyak
TI  - The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 5
EP  - 18
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a0/
LA  - ru
ID  - VVGUM_2018_21_3_a0
ER  - 
%0 Journal Article
%A V. V. Denisenko
%A V. M. Deundyak
%T The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 5-18
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a0/
%G ru
%F VVGUM_2018_21_3_a0
V. V. Denisenko; V. M. Deundyak. The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 3, pp. 5-18. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_3_a0/

[1] O. G. Avsyankin, “On the C*-algebra generated by multidimensional integral operators with homogeneous kernels and multiplicative shift operators”, Doklady Mathematics, 419:6 (2008), 727–728

[2] O. V. Besov, V. P. Ilin, S. M. Nikolskiy, Integral representations of functions and imbedding theorems, Nauka Publ., Moscow, 1975, 480 pp.

[3] V. V. Denisenko, V. M. Deundyak, “On the boundedness of integral operators with homogeneous kernels on the Heisenberg group with Koranyi norm”, Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Estestvennye nauki, 3:1 (2017), 21–27

[4] V. M. Deundyak, “Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating Coefficient”, Mathematical Notes, 87:5 (2010), 704–720 | DOI

[5] V. M. Deundyak, E. I. Miroshnikova, “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients”, Russian Mathematics, 2012, no. 7, 3–17

[6] S. G. Kreyn, Yu. I. Petunin, E. M. Semenov, Interpolation of Linear Operator, Nauka Publ., Moscow, 1978, 400 pp.

[7] L. A. Lyusternik, V. I. Sobolev, Brief Course of Functional Analysis, Nauka Publ., Moscow, 1982, 270 pp.

[8] I. B. Simonenko, “A new general method of investigating linear operator equations of singular integral equation type. II”, Izvestiya: Mathematics, 29:4 (1965), 757–782

[9] I. B. Simonenko, “Operators of convolution type in cones”, Sbornik: Mathematics, 74:2 (1967), 298–313

[10] I. B. Simonenko, The local method in the theory of shift-invariant operators and their envelope, Izd-vo TsVVR Publ., Rostov-on-Don, 2007, 120 pp.

[11] L. Capogna, D. Danielli, S. D. Pauls, J. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhauser, Basel, 2007, 224 pp.

[12] G. S. Chirikjian, A. B. Kyatkin, Engineering applications of noncommutative harmonic analysis: with emphasis on rotation and motion groups, CRC Press, Boca Raton, 2001, 698 pp.

[13] V. M. Deundyak, “Convolution Operators with Weakly Oscillating Coeffcients in Hilbert Moduli on Groups and Applications”, Journal of Mathematical Sciences, 208:1 (2015), 100–108 | DOI

[14] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhauser, Boston, 2001, 642 pp.

[15] V. V. Kisil, “Symmetry, geometry, and quantization with hypercomplex numbers”, Geometry, Integrability and Quantization, 18 (2017), 11–76 | DOI

[16] S. G. Krantz, Explorations in harmonic analysis: with applications to complex function theory and the Heisenberg group, Birkhauser, Boston, 2009, 360 pp.