Kinematic dynamo by parity-antisymmetric flows
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to mathematical and numerical modelling of kinematic generation of magnetic field, involving large spatial scales, by a small-scale flow of incompressible electrically conducting fluid featuring a mirror antisymmetry. Direct numerical simulation demonstrates that such flows can support a magnetic field generation in presence of two main generation mechanisms, namely, the magnetic alpha-effect and negative eddy diffusivity. The magnetic field generation can be described as follows: $\alpha$-effect creates large-scale field $_0$> of amplitude ${\rm O}(1)$, oscillating on a time scale ${\rm O}(\varepsilon^{-1})$. Fluctuations {h$_0$} of this field have an amplitude ${\rm O}(1)$. Small-scale flow creates {1$_0$} with amplitude ${\rm O}(\varepsilon)$. Interaction of this field with small-scale flow creates an electromotive force $\times${h$_1$}> of amplitude ${\rm O}(\varepsilon)$. This electromotive force gives rise to an eddy diffusivity that supports a growth of a mean field $_0$> on a time scale ${\rm O}(\varepsilon^{-1})$. Here $\varepsilon$ is the characteristic spatial scale ratio. It may be important for applications that the mechanism for generation considered here does work in a wide range of magnetic Prandtl numbers. Numerical simulation for a flow, which velocity has a zero kinetic helicity everywhere in space, shows that the absence of helicity does not affect magnetic field generation.
Keywords: magnetohydrodynamics, magnetic feld, magnetic $\alpha$-effect, kinematic dynamo, helicity.
@article{VVGUM_2018_21_2_a6,
     author = {A. A. Andrievsky and V. A. Zheltigovskii and R. A. Chertovskikh},
     title = {Kinematic dynamo by parity-antisymmetric flows},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/}
}
TY  - JOUR
AU  - A. A. Andrievsky
AU  - V. A. Zheltigovskii
AU  - R. A. Chertovskikh
TI  - Kinematic dynamo by parity-antisymmetric flows
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 83
EP  - 95
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/
LA  - ru
ID  - VVGUM_2018_21_2_a6
ER  - 
%0 Journal Article
%A A. A. Andrievsky
%A V. A. Zheltigovskii
%A R. A. Chertovskikh
%T Kinematic dynamo by parity-antisymmetric flows
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 83-95
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/
%G ru
%F VVGUM_2018_21_2_a6
A. A. Andrievsky; V. A. Zheltigovskii; R. A. Chertovskikh. Kinematic dynamo by parity-antisymmetric flows. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 83-95. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/

[1] M. M. Vishik, “Periodic Dynamo II. Numerical Modelling and Analysis of Geophysical Processes”, Vychislitelnaya seysmologiya, 20 (1987), 12–22

[2] F. Krause, K.-Kh. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory, Mir Publ., Moscow, 1984, 320 pp.

[3] H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids, Mir Publ., Moscow, 1980, 339 pp.

[4] A. Brandenburg, “Dissipation in dynamos at low and high magnetic Prandtl numbers”, Astron. Nachr., 2011, no. 332, 725–731

[5] R. Chertovskih, V. Zheligovsky, “Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer”, Physica D., 2015, no. 313, 99–116 | DOI | MR | Zbl

[6] H. K. Moffatt, “Helicity and celestial magnetism”, Proc. R. Soc. A., 2015, no. 472, 20160183 | DOI | MR

[7] A. Andrievsky, A. Brandenburg, A. Noullez, V. Zheligovsky, “Negative magnetic eddy diffusivities from test-field method and multiscale stability theory”, Astrophysical J., 2015., no. 811, 135–164 | DOI

[8] K.-H. Rädler, “Mean-field dynamo theory: early ideas and today's problems”, Magnetohydrodynamics, 2007, 55–72, Springer, Dordrecht | DOI | MR

[9] A. Rasskazov, R. Chertovskih, V. Zheligovsky, “Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid”, Phys. Rev. E., 2018, no. 97., 043201 | DOI

[10] P. Sagaut, Large eddy simulation for incomressible flows, Springer-Verlag, Berlin, 2006, 558 pp. | MR

[11] V. Zheligovsky, “Numerical solution of the kinematic dynamo problem for Beltrami flows in a sphere”, Scientific Computing, 1993, no. 8, 41–68 | DOI | MR

[12] V. Zheligovsky, Large-scale perturbations of magnetohydrodynamic regimes: linear and weakly nonlinear stability theory, Springer-Verlag, Heidelberg, 2011, 330 pp. | DOI | MR