Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_2_a6, author = {A. A. Andrievsky and V. A. Zheltigovskii and R. A. Chertovskikh}, title = {Kinematic dynamo by parity-antisymmetric flows}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {83--95}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/} }
TY - JOUR AU - A. A. Andrievsky AU - V. A. Zheltigovskii AU - R. A. Chertovskikh TI - Kinematic dynamo by parity-antisymmetric flows JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 83 EP - 95 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/ LA - ru ID - VVGUM_2018_21_2_a6 ER -
%0 Journal Article %A A. A. Andrievsky %A V. A. Zheltigovskii %A R. A. Chertovskikh %T Kinematic dynamo by parity-antisymmetric flows %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 83-95 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/ %G ru %F VVGUM_2018_21_2_a6
A. A. Andrievsky; V. A. Zheltigovskii; R. A. Chertovskikh. Kinematic dynamo by parity-antisymmetric flows. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 83-95. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/
[1] M. M. Vishik, “Periodic Dynamo II. Numerical Modelling and Analysis of Geophysical Processes”, Vychislitelnaya seysmologiya, 20 (1987), 12–22
[2] F. Krause, K.-Kh. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory, Mir Publ., Moscow, 1984, 320 pp.
[3] H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids, Mir Publ., Moscow, 1980, 339 pp.
[4] A. Brandenburg, “Dissipation in dynamos at low and high magnetic Prandtl numbers”, Astron. Nachr., 2011, no. 332, 725–731
[5] R. Chertovskih, V. Zheligovsky, “Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer”, Physica D., 2015, no. 313, 99–116 | DOI | MR | Zbl
[6] H. K. Moffatt, “Helicity and celestial magnetism”, Proc. R. Soc. A., 2015, no. 472, 20160183 | DOI | MR
[7] A. Andrievsky, A. Brandenburg, A. Noullez, V. Zheligovsky, “Negative magnetic eddy diffusivities from test-field method and multiscale stability theory”, Astrophysical J., 2015., no. 811, 135–164 | DOI
[8] K.-H. Rädler, “Mean-field dynamo theory: early ideas and today's problems”, Magnetohydrodynamics, 2007, 55–72, Springer, Dordrecht | DOI | MR
[9] A. Rasskazov, R. Chertovskih, V. Zheligovsky, “Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid”, Phys. Rev. E., 2018, no. 97., 043201 | DOI
[10] P. Sagaut, Large eddy simulation for incomressible flows, Springer-Verlag, Berlin, 2006, 558 pp. | MR
[11] V. Zheligovsky, “Numerical solution of the kinematic dynamo problem for Beltrami flows in a sphere”, Scientific Computing, 1993, no. 8, 41–68 | DOI | MR
[12] V. Zheligovsky, Large-scale perturbations of magnetohydrodynamic regimes: linear and weakly nonlinear stability theory, Springer-Verlag, Heidelberg, 2011, 330 pp. | DOI | MR