Kinematic dynamo by parity-antisymmetric flows
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 83-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to mathematical and numerical modelling of kinematic generation of magnetic field, involving large spatial scales, by a small-scale flow of incompressible electrically conducting fluid featuring a mirror antisymmetry. Direct numerical simulation demonstrates that such flows can support a magnetic field generation in presence of two main generation mechanisms, namely, the magnetic alpha-effect and negative eddy diffusivity. The magnetic field generation can be described as follows: $\alpha$-effect creates large-scale field $_0$> of amplitude ${\rm O}(1)$, oscillating on a time scale ${\rm O}(\varepsilon^{-1})$. Fluctuations {h$_0$} of this field have an amplitude ${\rm O}(1)$. Small-scale flow creates {1$_0$} with amplitude ${\rm O}(\varepsilon)$. Interaction of this field with small-scale flow creates an electromotive force $\times${h$_1$}> of amplitude ${\rm O}(\varepsilon)$. This electromotive force gives rise to an eddy diffusivity that supports a growth of a mean field $_0$> on a time scale ${\rm O}(\varepsilon^{-1})$. Here $\varepsilon$ is the characteristic spatial scale ratio. It may be important for applications that the mechanism for generation considered here does work in a wide range of magnetic Prandtl numbers. Numerical simulation for a flow, which velocity has a zero kinetic helicity everywhere in space, shows that the absence of helicity does not affect magnetic field generation.
Keywords: magnetohydrodynamics, magnetic feld, magnetic $\alpha$-effect, kinematic dynamo, helicity.
@article{VVGUM_2018_21_2_a6,
     author = {A. A. Andrievsky and V. A. Zheltigovskii and R. A. Chertovskikh},
     title = {Kinematic dynamo by parity-antisymmetric flows},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/}
}
TY  - JOUR
AU  - A. A. Andrievsky
AU  - V. A. Zheltigovskii
AU  - R. A. Chertovskikh
TI  - Kinematic dynamo by parity-antisymmetric flows
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 83
EP  - 95
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/
LA  - ru
ID  - VVGUM_2018_21_2_a6
ER  - 
%0 Journal Article
%A A. A. Andrievsky
%A V. A. Zheltigovskii
%A R. A. Chertovskikh
%T Kinematic dynamo by parity-antisymmetric flows
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 83-95
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/
%G ru
%F VVGUM_2018_21_2_a6
A. A. Andrievsky; V. A. Zheltigovskii; R. A. Chertovskikh. Kinematic dynamo by parity-antisymmetric flows. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 83-95. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a6/