Longitudinal shear flow in the annular finned channel with slip condition at the external boundary
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study, in the Stokes approximation, we have solved the problem of the laminar shear flow of a viscous fluid in an annular channel with a finned external cylindrical surface for the translational motion of the inner cylinder. The solution of the boundaryvalue problem for the longitudinal velocity in the annular sector has been obtained by decomposition of the flow domain with subsequent representation of the velocity fields in the form of series expansions in eigenfunctions of the Laplace equation. The velocity fields for the corresponding subdomains are: \begin{equation} w_1(r,\phi)=\left(W-A_0\right)\frac{\ln r}{\ln r_1}+A_0+\sum_{n=1}^{\infty}A_n\cos(t_n\phi)\left[ -r_1^{-2t_n}r^{t_n}+r^{-t_n}\right] \, , \end{equation} \begin{equation} w_2(r,\phi)=\sum_{n=1}^{\infty}B_n\cos(p_n\phi)\left[ r^{p_n}+r_2^{2p_n}r^{-p_n}\right] \, , \end{equation} where \begin{equation} p_n=\frac{\pi\left( 2n-1\right) }{2\phi_0}\, ,\, t_n=\frac{\pi n}{\phi_0}\, , \, n=1,2,3, \cdots \end{equation} The unknown coefficients $A_n$ , $B_n$ can be obtained from the matching conditions on the subdomain boundary. To obtain an approximate solution, we restrict the number of terms in the series considered by the numbers $N$ and $M$ respectively. This mathematical model gives a good approximation for the longitudinal velocity field in channels with different number of fins and their height. The results can be used to simulate the effect of macroscopic hydrophobicity on a textured or porous boundary. The value of the longitudinal velocity, averaged at the level of the fins edges, can be a good approximation for the slip velocity at the interface of “liquidtextured surface”.
Keywords: finned channel, shear flow, Stokes approximation, eigenfunctions, slip velocity, hydrophobic surfaces.
@article{VVGUM_2018_21_2_a5,
     author = {I. V. Chernyshev and D. V. Krivokhizhin},
     title = {Longitudinal shear flow in the annular finned channel with slip condition at the external boundary},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a5/}
}
TY  - JOUR
AU  - I. V. Chernyshev
AU  - D. V. Krivokhizhin
TI  - Longitudinal shear flow in the annular finned channel with slip condition at the external boundary
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 75
EP  - 82
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a5/
LA  - ru
ID  - VVGUM_2018_21_2_a5
ER  - 
%0 Journal Article
%A I. V. Chernyshev
%A D. V. Krivokhizhin
%T Longitudinal shear flow in the annular finned channel with slip condition at the external boundary
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 75-82
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a5/
%G ru
%F VVGUM_2018_21_2_a5
I. V. Chernyshev; D. V. Krivokhizhin. Longitudinal shear flow in the annular finned channel with slip condition at the external boundary. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 75-82. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a5/

[1] E. V. Mosina, I. V. Chernyshev, “Fluid Flow near the Porous Boundary”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 4:3 (2011), 999–1001

[2] E. V. Mosina, I. V. Chernyshev, Flow of Liquid in a Flat Channel over a Layer of Regular Porous Medium, Scientific E-Archive of Natural Sciences Academy , 2018 http://www.econf.rae.ru/article/8903

[3] E. V. Mosina, I. V. Chernyshev, “Filtration Model of Longitudinal Flow in a Finned Cylindrical Channel”, PMTF, 53:3 (2012), 48–55 | Zbl

[4] Ng. Chiu-On, H. C. W. Chu, C. Y. Wang, “On the effects of liquid-gas interfacial shear on slip flow through a parallel-plate channel with superhydrophobic grooved walls”, Physics of Fluids, 22 (2010), 102002 | DOI

[5] Ng. Chiu-On, C. Y. Wang, “Stokes shear flow over a grating: Implications for superhydrophobic slip”, Physics of Fluids, 21 (2009), 013602 | DOI | Zbl

[6] D. F. James, A. M. J. Davis, “Flow at the interface of a model fibrous porous medium”, J. Fluid Mech, 426 (2001), 47–72 | DOI | MR | Zbl

[7] J. T. Jeong, “Slip boundary condition on an idealized porous wall”, Physics of Fluids, 13:7 (2001), 1884–1890 | DOI | MR

[8] C. Y. Wang, “The Stokes drag due to the sliding of a smooth plate over a finned plate”, Physics of Fluids, 6:7 (1994), 2248–2252 | DOI | Zbl