Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_2_a2, author = {A. V. Khokhlov}, title = {Comparative analysis of creep curves properties generated by linear and nonlinear heredity theories under multi-step loadings}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {27--51}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a2/} }
TY - JOUR AU - A. V. Khokhlov TI - Comparative analysis of creep curves properties generated by linear and nonlinear heredity theories under multi-step loadings JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 27 EP - 51 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a2/ LA - ru ID - VVGUM_2018_21_2_a2 ER -
%0 Journal Article %A A. V. Khokhlov %T Comparative analysis of creep curves properties generated by linear and nonlinear heredity theories under multi-step loadings %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 27-51 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a2/ %G ru %F VVGUM_2018_21_2_a2
A. V. Khokhlov. Comparative analysis of creep curves properties generated by linear and nonlinear heredity theories under multi-step loadings. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 27-51. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a2/
[1] S. I. Alekseeva, M. A. Fronya, I. V. Viktorova, “Analysis of Viscoelastic Properties of Polymer-Carbon Composites”, Composites and Nanostructures, 2011, no. 2, 28–39
[2] S. I. Alekseeva, “The Model of Nonlinear Hereditary Medium Taking into Account Temperature and Humidity”, Doklady akademii nauk, 376:4 (2001), 471–473
[3] I. I. Bugakov, Creep of Polymer Materials, Nauka Publ., Moscow, 1973, 287 pp.
[4] N. N. Dergunov, L. Kh. Papernik, Yu. N. Rabotnov, “Analysis of Graphite Behavior on the Basis of Nonlinear Heredity Theory”, Journal of Applied Mechanics and Technical Physics, 1971, no. 2, 76–82
[5] A. M. Lokoshchenko, Creep and Long-Lasting Strength of Metals, Fizmatlit Publ., Moscow, 2016, 504 pp.
[6] N. N. Malinin, Calculations of Engineering Elements Creep, Mashinostroenie Publ., Moscow, 1981, 221 pp.
[7] A. E. Melnis, Ya. B. Layzan, “Nonlinear Creep of Human Compact Bone Tissue upon Stretching”, Polymer Mechanics, 14:1 (1978), 97–100 | MR
[8] A. F. Melshanov, Yu. V. Suvorova, S. Yu. Khazanov, “Test Verification of a Constitutive Correlation for Metals under Loading and Unloading”, Mechanics of Solids, 1974, no. 6, 166–170
[9] V. V. Moskvitin, Cyclic Loading of Structure Elements, Nauka Publ., Moscow, 1981, 344 pp. | MR
[10] V. S. Namestnikov, Yu. N. Rabotnov, “On Hereditary Creep Theories”, Journal of Applied Mechanics and Technical Physics, 2:4 (1961), 148–150
[11] F. Odkvist, “Technical Theories of Creep”, Mekhanika, 1959, no. 2, 101–111
[12] A. E. Osokin, Yu. V. Suvorova, “Nonlinear Governing Equation of a Hereditary Medium and the Methodology for Determining Its Parameters”, Journal of Applied Mathematics and Mechanics, 42:6 (1978), 1107–1114 | MR
[13] Yu. N. Rabotnov, “Some Issues of Creep Theory”, Vestnik MGU, 1948, no. 10, 81–91 | MR
[14] Yu. N. Rabotnov, L. Kh. Papernik, E. I. Stepanychev, “Nonlinear Creep of Fibre-Glass Reinforced Plastic TS 8/3-250”, Polymer Mechanics, 1971, no. 3, 391–397
[15] Yu. N. Rabotnov, Yu. V. Suvorova, “On the Law of Metals Deformation under Uni-Axial Loading”, Mechanics of Solids, 1972, no. 4, 41–54
[16] Yu. N. Rabotnov, L. Kh. Papernik, E. I. Stepanychev, “On Connection between Fiberglass Creep Behavior and Momentary Deforming Curve”, Polymer Mechanics, 1971, no. 4, 624–628
[17] Yu. N. Rabotnov, Creep Problems in Structural Members, Nauka Publ., Moscow, 1966, 752 pp.
[18] Yu. N. Rabotnov, L. Kh. Papernik, E. I. Stepanychev, “Description of Time Dependent Effects in High Polymers Using the Nonlinear Theory of Heredity”, Polymer Mechanics, 1971, no. 1, 74–87
[19] Yu. N. Rabotnov, Fundamentals of Hereditary Mechanics of Solids, Nauka Publ., Moscow, 1977, 384 pp.
[20] V. P. Radchenko, Yu. P. Samarin, “Effect of Creep on the Elastic Deformation of a Laminar Composite”, Mechanics of Composite Materials, 19:2 (1983), 231–237
[21] V. P. Radchenko, D. V. Shapievskiy, “On the Drift of Elastic Deformation due to Creep for Nonlinear Elastic Materials”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2006, no. 43, 99–105 | DOI
[22] V. P. Radchenko, P. E. Kichaev, Power Conception of Metals’ Creep and Vibrocreep, SamSTU Publ., Samara, 2011, 157 pp.
[23] Yu. V. Suvorova, S. I. Alekseeva, “Engineering Applications of Heredity Model to Description of the Polymer and Polymer Matrix Composite Behavior”, Zavodskaya laboratoriya. Diagnostika materialov, 66:5 (2000), 47–51
[24] Yu. V. Suvorova, S. I. Alekseeva, “A Nonlinear Model for Isotropic Hereditary Media under Complex Stress”, Mechanics of Composite Materials, 1993, no. 5, 602–607
[25] Yu. V. Suvorova, “Nonlinear Effects in Case of Hereditary Medium Deformation”, Polymer Mechanics, 1977, no. 6, 976–980
[26] Yu. V. Suvorova, “On the Rabotnov’s Nonlinear Hereditary Equation and Its Applications”, Mechanics of Solids, 2004, no. 1, 174–181
[27] Y. C. Fung, “Mathematical Models of Strain-Deformation Dependence for Soft Living Tissues”, Polymer Mechanics, 1975, no. 5, 850–867
[28] A. V. Khokhlov, “Analysis of General Properties of Creep Curves Generated by the Rabotnov’s Nonlinear Hereditary Relation under Multi-Step Loadings”, Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2017, no. 3, 93–123 | DOI
[29] A. V. Khokhlov, “Analysis of Creep Curves Produced by the Linear Viscoelasticity Theory under Cyclic Stepwise Loadings”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21:2 (2017), 326–361 | DOI | Zbl
[30] A. V. Khokhlov, “Analysis of Creep Curves Properties Generated by the Linear Viscoelasticity Theory under Arbitrary Loading Programs at Initial Stage”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2018, no. 1 | DOI
[31] A. V. Khokhlov, “Analysis of Properties of Ramp Stress Relaxation Curves Produced by the Rabotnov Nonlinear Relation for Viscoelastic Materials”, Mechanics of Composite Materials, 2018
[32] A. V. Khokhlov, “Asymptotic Commutativity of Creep Curves at Piecewise-Constant Stress Produced by the Linear Viscoelasticity Theory”, Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 1, 70–82
[33] A. V. Khokhlov, “Two-Facet Bounds for Relaxation Modulus in the Linear Viscoelasticity via Relaxation Curves at Ramp Strain Histories and Identification Techniques”, Mechanics of Solids, 2018, no. 3, 81–104 | DOI
[34] A. V. Khokhlov, “The Qualitative Analysis of Theoretic Curves Generated by Linear Viscoelasticity Constitutive Equation”, Science and Education: Scientific Publication of BMSTU, 2016, no. 5, 187–245 | DOI
[35] A. V. Khokhlov, “Long-term Strength Curves Generated by the Nonlinear Maxwell-type Model for Viscoelastoplastic Materials and the Linear Damage Rule under Step Loading”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 20:3 (2016), 524–543 | DOI | Zbl
[36] A. V. Khokhlov, “Creep and Relaxation Curves Produced by the Rabotnov Nonlinear Constitutive Relation for Viscoelastoplastic Materials”, Problems of Strength and Plasticity, 78:4 (2016), 452–466
[37] A. V. Khokhlov, “Failure Criterion and Long-Term Strength Curves Generated by the Rabotnov Nonlinear Constitutive Relation of Heredity Theory”, Vestnik mashinostroeniya, 2017, no. 6, 39–46
[38] A. V. Khokhlov, “The Nonlinear Maxwell-Type Viscoelastoplastic Model: Properties of Creep Curves at Piecewise-Constant Stress and Criteria for Plastic Strain Accumulation”, Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 3, 55–68
[39] A. V. Khokhlov, “General Properties of Stress-Strain Curves at Constant Strain Rate Yielding from Linear Theory of Viscoelasticity”, Problems of Strength and Plasticity, 77:1 (2015), 60–74
[40] A. V. Khokhlov, “Constitutive Relation for Rheological Processes: Properties of Theoretic Creep Curves and Simulation of Memory Decay”, Mechanics of Solids, 2007, no. 2, 147–166 | MR
[41] A. V. Khokhlov, “Properties of Stress-Strain Curves Family Generated by the Rabotnov Nonlinear Relation for Viscoelastic Materials”, Mechanics of Solids, 2018
[42] S. D. Abramowitch, S. L.-Y. Woo, “An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory”, J. Biomech. Eng., 126 (2004.), 92–97 | DOI
[43] B. Babaei, S. D. Abramowitch et al., “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials”, J. Royal. Soc. Interface, 12 (2015), 20150707 | DOI
[44] A. Nekouzadeh, K. M. Pryse, E. L. Elson, G. M. Genin, “A simplified approach to quasi-linear viscoelastic modeling”, J. of Biomechanics, 40:14 (2007), 3070–3078 | DOI
[45] J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, William Andrew, Elsevier, 2015, 520 pp.
[46] J. Betten, Creep Mechanics, Springer-Verlag, Berlin, Heidelberg, 2008, 367 pp.
[47] J. Dandrea, R. S. Lakes, “Creep and creep recovery of cast aluminum alloys”, Mechanics of Time-Dependent Materials, 13:4. (2009), 303–315 | DOI
[48] L. E. De Frate, G. Li, “The prediction of stress-relaxation of ligaments and tendons using the quasilinear viscoelastic model”, Biomechanics and Modeling in Mechanobiology, 6:4 (2007), 245–251 | DOI
[49] R. De Pascalis, I. D. Abrahams, W. J. Parnell, “On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model”, Proc. R. Soc. A., 470 (2014), 20140058 | DOI
[50] A. D. Drozdov, N. Dusunceli, “Unusual mechanical response of carbon black-filled thermoplastic elastomers”, Mechanics of Materials, 69:1 (2014), 116–131 | DOI
[51] S. E. Duenwald, R. Vanderby, R. S. Lakes, “Constitutive equations for ligament and other soft tissue: evaluation by experiment”, Acta Mechanica, 205 (2009), 23–33 | DOI | Zbl
[52] S. E. Duenwald, R. Vanderby, R. S. Lakes, “Stress relaxation and recovery in tendon and ligament: Experiment and modeling”, Biorheology, 47 (2010), 1–14 | DOI
[53] A. Fatemi, L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials”, Int. J. Fatigue, 20:1 (1998), 9–34 | DOI
[54] W. N. Findley, J. S. Lai, K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, North Holland, Amsterdam, 1976, 368 pp. | MR | Zbl
[55] Y. C. Fung, Biomechanics. Mechanical Properties of Living Tissues, SpringerVerlag,, N.-Y., 1993, 568 pp.
[56] Y. C. Fung, “Stress-strain history relations of soft tissues in simple elongation”, Biomechanics, Its Foundations and Objectives, 1972, 181–208, Prentice-Hall, New Jersey
[57] F. Khan, C. Yeakle, “Experimental investigation and modeling of non-monotonic creep behavior in polymers”, Int. J. Plasticity, 27:4 (2011), 512–521 | DOI | Zbl
[58] R. S. Lakes, Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009, 461 pp.
[59] J. R. Funk, G. W. Hall, J. R. Crandall, W. D. Pilkey, “Linear and quasi-linear viscoelastic characterization of ankle ligaments”, J. Biomech. Eng., 122 (2000), 15–22 | DOI
[60] J. J. Sarver, P. S. Robinson, D. M. Elliott, “Methods for quasi-linear viscoelastic modeling of soft tissue: application to incremental stress-relaxation experiments”, J. Biomech. Eng, 125:5 (2003), 754–758 | DOI
[61] A. A. Sauren, E. P. Rousseau, “A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung”, J. Biomech. Eng., 105 (1983), 92–95 | DOI
[62] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer, Berlin, 1989, 769 pp. | MR | Zbl
[63] S. L.-Y. Woo, “Mechanical properties of tendons and ligaments – I. Quasi-static and nonlinear viscoelastic properties”, Biorheology, 19 (1982), 385–396 | DOI