Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_1_a7, author = {A. S. Khoroshev and V. G. Shakhov}, title = {The intensity of convection of fluids with different prandtl number in a vertical cylinder of large aspect ratio}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {70--79}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a7/} }
TY - JOUR AU - A. S. Khoroshev AU - V. G. Shakhov TI - The intensity of convection of fluids with different prandtl number in a vertical cylinder of large aspect ratio JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 70 EP - 79 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a7/ LA - ru ID - VVGUM_2018_21_1_a7 ER -
%0 Journal Article %A A. S. Khoroshev %A V. G. Shakhov %T The intensity of convection of fluids with different prandtl number in a vertical cylinder of large aspect ratio %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 70-79 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a7/ %G ru %F VVGUM_2018_21_1_a7
A. S. Khoroshev; V. G. Shakhov. The intensity of convection of fluids with different prandtl number in a vertical cylinder of large aspect ratio. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 1, pp. 70-79. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a7/
[1] G. Z. Gershuni, E. M. Zhukovitskiy, Convective Stability of Incompressible Fluid, Nauka Publ., Moscow, 1972, 392 pp.
[2] G. A. Ostroumov, “Mathematical Theory of Steady Heat Transfer in Round Vertical Borehole due to the Superposition of Forced and Free Laminar Convection”, Zhurnal tekhnicheskoy fiziki, 20:6 (1950), 750–757 | MR
[3] G. A. Ostroumov, Free Convection in Internal Tasks, Gosudarstvennoe izd-vo tekhniko-teoreticheskoy literatury, Moscow, Leningrad, 1952, 286 pp. | MR
[4] A. S. Khoroshev, “The Intensity of Free Convection Flow in a Vertical Cylinder with a Constant Vertical Temperature Gradient on the Side Surface”, Nauchnoe obozrenie, 2014, no. 5, 74–80
[5] A. S. Khoroshev, V. G. Shakhov, “Simulation of laminar Freely Induced Flow in Long Vertical Cylinder”, Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 13:4 (2011), 72–76
[6] ANSYS CFX-Solver Theory Guide, ANSYS, Inc., Canonsburg, 2009, 257 pp.
[7] S. P. S. Arya, “Free convection similarity and measurements in flows with and without shear”, Journal of the Atmospheric Sciences, 29 (1972), 877–885 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[8] A. A. Ganguli, A. B. Pandit, J. B. Joshi, “Numerical predictions of flow patterns due to natural convection in a vertical slot”, Chemical Engineering Science, 62 (2007), 4479–4495 | DOI
[9] F. Heslot, B. Castaing, A. Libchaber, “Transitions to turbulence in helium gas”, Physical Review A., 36 (1987), 5870–5873 | DOI
[10] G. Muller, G. Neumann, W. Weber, “Natural convection in vertical Bridgman configurations”, Journal of Crystal Growth, 70 (1974), 78–93 | DOI
[11] S. Schneider, J. Straub, “Laminar natural convection in a cylindrical enclosure with different end temperatures”, Int. J. Heat Mass Transfer, 35 (1992), 545–557 | DOI
[12] I. Rodriguez, J. Castro, C. D. Perez-Segarra, A. Oliva, “Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection”, International Journal of Thermal Sciences, 48 (2009), 708–721 | DOI