The method of estimation of the effective roughness coefficient in the meandering channels based on numerical simulation
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 1, pp. 64-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose the method for calculating the Manning effective coefficient that allows estimating the resistance to water flows in meandering river channels. The method is based on the numerical non-stationary models of the dynamics of shallow water in the irregular channel. We show the decrease in the average velocity of the fluid in the meandering channel in comparison with the straight-channel. On the basis of the N.B. Baryshnikov’s constructed dependence of the average velocity in the channel cross-section from the main value of the Manning coefficient, we determine the contribution to the flow resistance from meandering of the channel. The numerical model utilizes the Saint-Venant equations, which describe the dynamics of flows in the theory of shallow water and considers the irregular of the relief, external and internal forces, and the work of sources. For integrating the system of equations, we use the CSPH-TVD method and parallel technologies CUDA. With an increase in the degree of sinuosity of the channel, we have a decrease in the average velocity of the fluid in the section of the channel. Varying the main value of the Manning coefficient n0 in the straight-channel, we estimated the contribution to the flow resistance from the meandering of the channel and obtained the values of the effective Manning coefficient of the channel for various sets of parameters.
Mots-clés : hydrodynamic simulation, Chezy model
Keywords: meandering channel, numerical model, roughness coefficient.
@article{VVGUM_2018_21_1_a6,
     author = {T. A. Dyakonova},
     title = {The method of estimation of the effective roughness coefficient in the meandering channels based on numerical simulation},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {64--69},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a6/}
}
TY  - JOUR
AU  - T. A. Dyakonova
TI  - The method of estimation of the effective roughness coefficient in the meandering channels based on numerical simulation
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 64
EP  - 69
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a6/
LA  - ru
ID  - VVGUM_2018_21_1_a6
ER  - 
%0 Journal Article
%A T. A. Dyakonova
%T The method of estimation of the effective roughness coefficient in the meandering channels based on numerical simulation
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 64-69
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a6/
%G ru
%F VVGUM_2018_21_1_a6
T. A. Dyakonova. The method of estimation of the effective roughness coefficient in the meandering channels based on numerical simulation. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 1, pp. 64-69. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a6/

[1] N. B. Baryshnikov, M. S. Dregval, D. I. Isaev, I. S. Gavrilov, “Hydraulic Resistances and Velocity Fields of Flows in Riverbeds with Complicated Cross-Sections”, Uchenye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2017, no. 46, 10–20

[2] A. A. Voronin, M. V. Eliseeva, A. V. Pisarev, A. V. Khoperskov, S. S. Khrapov, “Simulation Models of Surface Water Dynamics Using Remote Sensing Data”, Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii, 2012, no. 3, 54–62

[3] N. B. Baryshnikov, E. S. Subbotina, E. M. Skomorohova, E. A. Potashko, “Roughness Coefficients of Floodplains”, Uchenye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2012, no. 23, 13–20

[4] T .A. Dyakonova, A. V. Pisarev, A. V. Khoperskov, S. S. Khrapov, “The Mathematical Model of Surface Water Dynamics”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 1, 35–44

[5] A.V̇. Pisarev, S. S. Khrapov, A. V. Khoperskov, “The Numerical Scheme Based on a Combined SPH-TVD Approach: Simulation of Shear Flows”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 2, 138–14

[6] E. O. Agafonnikova, A. Yu. Klikunova, A. V. Khoperskov, “Computer simulation of the Volga river hydrological regime: problem of water-retaining dam optimal location”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 10:3 (2017), 148–155 | Zbl

[7] S. S. Dash, K. K. Khatua, “Sinuosity dependency on stage discharge in meandering channels”, Journal of Irrigation and Drainage Engineering, 142:9 (2016), 04016030 | DOI

[8] T. Dyakonova, A. Khoperskov, “Bottom friction models for shallow water equations: Manning's roughness coefficient and small-scale bottom heterogeneity”, Journal of Physics: Conference Series, 973 (2018), 012032, 10 pp.

[9] T. Dyakonova, A. Khoperskov, S. Khrapov, “Numerical model of shallow water: the use of NVIDIA CUDA graphics processors”, Russian Supercomputing Days, Springer, Cham, 2016, 132–145 | DOI

[10] S. Groot, B. de Graaff, C. Oosterhoff, J. Medenblik, “The Regge River: from canalized to meandering”, Notes, 2008, 1983–1990

[11] M. Habibi, M. R. Namaee, M. Saneie, “An experimental investigation to calculate flow resistance in a steep river”, KSCE Journal of Civil Engineering, 18:4 (2014), 1176–1184 | DOI | MR

[12] J. S. Lee, P. Y. Julien Composite flow resistance, Journal of flood engineering, 8:2 (2017), 55–75