Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_1_a5, author = {O. S. Lebedeva and N. G. Lebedev and I. A. Lyapkosova}, title = {Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {53--63}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a5/} }
TY - JOUR AU - O. S. Lebedeva AU - N. G. Lebedev AU - I. A. Lyapkosova TI - Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 53 EP - 63 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a5/ LA - ru ID - VVGUM_2018_21_1_a5 ER -
%0 Journal Article %A O. S. Lebedeva %A N. G. Lebedev %A I. A. Lyapkosova %T Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 53-63 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a5/ %G ru %F VVGUM_2018_21_1_a5
O. S. Lebedeva; N. G. Lebedev; I. A. Lyapkosova. Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 1, pp. 53-63. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a5/
[1] G. L. Bir, G. E. Pikus, Symmetry and Deformation Effects in Semiconductors, Nauka Publ., Moscow, 1972, 584 pp.
[2] L. A. Chernozatonskiy, P. B. Sorokin, A. A. Artyukh, “New Nanostructures Based on Graphene: Physical and Chemical Properties and Applications”, Russian Chemical Reviews, 83:3 (2014), 251–279 | DOI
[3] P. N. Dyachkov, Carbon Nanotubes: Structure, Properties, Applications, Laboratoriya znaniy Publ., BINOM, M., 2006, 293 pp.
[4] A. V. Eletskiy, “Mechanical Properties of Carbon Nanostructures and Materials Based on Them”, Physic, 177:3 (2007), 233–274
[5] Yu. A. Izyumov, N. I. Chashchin, D. S. Alekseev, The Theory of Strongly Correlated Systems. The Method of Generating Functional, Regulyarnaya i khaoticheskaya dinamika Publ., Moscow, 2006, 384 pp.
[6] Z. H. Khan, A. R. Kermany, Öchsner , Iacopi F., “Mechanical and electromechanical properties of graphene and their potential application in MEMS”, Journal of Physics D: Applied Physics, 50 (2017), 053003, 24 pp. | DOI
[7] I. A. Kvasnikov, Thermodynamics and Statistical Physics, v. 4, Quantum Statistics, KomKniga Publ., Moscow, 2005, 352 pp. | MR
[8] O. S. Lebedeva, N. G. Lebedev, “Deformational Change of the Band Gap of Impurity Carbon Nanotubes”, Russian Journal of Physical Chemistry, 33:10 (2014), 73–80
[9] O. S. Lebedeva, N. G. Lebedev, “Piezoresistance Effect in Impurity Single-Walled Carbon Nanotubes in the Hubbard-I Approximation”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 195:2 (2014), 149–161
[10] O. S. Lebedeva, N. G. Lebedev, “Effect of Strain and Compression Deformations on the Piezoresistivity of Carbon Nanotubes and Graphene Nanofilms”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 189:1 (2014), 26–34
[11] Y. Li, W. Wang, K. Liano, C. Hu, “Piezoresistive effect in carbon nanotube films”, Chinese Science Bulletin, 48:2 (2003), 125–127 | DOI
[12] O. S. Lyapkosova, N. G. Lebedev, “Piezoresistive Effect in Single-Walled Carbon Nanotubes”, Solid State Physics, 54:7 (2012), 1412–1416 | DOI
[13] W. A. Obitayo, T. Liu, “Review: Carbon Nanotube – Based Piezoresistive Strain Sensors”, Jornal of Sensors, 2012 (2012), 652438, 15 pp.
[14] V. M. Pereira, A. H. Castro Neto, N. M. R. Peres, “Tight-binding approach to uniaxial strain in graphene”, Physical Review B., 80:7, 045401 (1–8) | MR
[15] R. Saito, M. S. Dresselhaus, G. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, London, 1999, 251 pp.
[16] S. V. Tyablikov, The Methods of the Quantum Theory of Magnetism, Nauka Publ., Moscow, 1975, 528 pp. | MR
[17] M. V. Vostrikov, “Creation of a Micro-Electromechanical Element Base Based on MEMS Technology”, High Technology. MSTU named after N.E. Bauman, 2007, 223–228