Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 1, pp. 53-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of a theoretical study of the piezoresistive properties of chiral carbon nanotubes with different types of conductivity are presented in this paper. An analytical expression for an electron spectrum of the chiral deformed carbon nanotubes has been obtained using the tight-binding method. External mechanical loads lead to band gap changes of the studied nanoparticles, which has an indirect influence on its conductivity. This change of conductivity due to a deformation is called piezoresistance effect, which is characterized by piezoresistive constants. In the framework of the Hubbard model and the Green function method, an analytic calculation of such constants, the longitudinal component of the elastoconductivity tensor, has been carried out. Its dependence on nanotubes’diameter, the magnitude of relative deformation of longitudinal compression and stretching are investigated.
Keywords: elasto-conductivity tensor, piezoresistance effect, compression and expansion deformation, band gap.
@article{VVGUM_2018_21_1_a5,
     author = {O. S. Lebedeva and N. G. Lebedev and I. A. Lyapkosova},
     title = {Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {53--63},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a5/}
}
TY  - JOUR
AU  - O. S. Lebedeva
AU  - N. G. Lebedev
AU  - I. A. Lyapkosova
TI  - Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2018
SP  - 53
EP  - 63
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a5/
LA  - ru
ID  - VVGUM_2018_21_1_a5
ER  - 
%0 Journal Article
%A O. S. Lebedeva
%A N. G. Lebedev
%A I. A. Lyapkosova
%T Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2018
%P 53-63
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a5/
%G ru
%F VVGUM_2018_21_1_a5
O. S. Lebedeva; N. G. Lebedev; I. A. Lyapkosova. Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 1, pp. 53-63. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a5/

[1] G. L. Bir, G. E. Pikus, Symmetry and Deformation Effects in Semiconductors, Nauka Publ., Moscow, 1972, 584 pp.

[2] L. A. Chernozatonskiy, P. B. Sorokin, A. A. Artyukh, “New Nanostructures Based on Graphene: Physical and Chemical Properties and Applications”, Russian Chemical Reviews, 83:3 (2014), 251–279 | DOI

[3] P. N. Dyachkov, Carbon Nanotubes: Structure, Properties, Applications, Laboratoriya znaniy Publ., BINOM, M., 2006, 293 pp.

[4] A. V. Eletskiy, “Mechanical Properties of Carbon Nanostructures and Materials Based on Them”, Physic, 177:3 (2007), 233–274

[5] Yu. A. Izyumov, N. I. Chashchin, D. S. Alekseev, The Theory of Strongly Correlated Systems. The Method of Generating Functional, Regulyarnaya i khaoticheskaya dinamika Publ., Moscow, 2006, 384 pp.

[6] Z. H. Khan, A. R. Kermany, Öchsner , Iacopi F., “Mechanical and electromechanical properties of graphene and their potential application in MEMS”, Journal of Physics D: Applied Physics, 50 (2017), 053003, 24 pp. | DOI

[7] I. A. Kvasnikov, Thermodynamics and Statistical Physics, v. 4, Quantum Statistics, KomKniga Publ., Moscow, 2005, 352 pp. | MR

[8] O. S. Lebedeva, N. G. Lebedev, “Deformational Change of the Band Gap of Impurity Carbon Nanotubes”, Russian Journal of Physical Chemistry, 33:10 (2014), 73–80

[9] O. S. Lebedeva, N. G. Lebedev, “Piezoresistance Effect in Impurity Single-Walled Carbon Nanotubes in the Hubbard-I Approximation”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 195:2 (2014), 149–161

[10] O. S. Lebedeva, N. G. Lebedev, “Effect of Strain and Compression Deformations on the Piezoresistivity of Carbon Nanotubes and Graphene Nanofilms”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 189:1 (2014), 26–34

[11] Y. Li, W. Wang, K. Liano, C. Hu, “Piezoresistive effect in carbon nanotube films”, Chinese Science Bulletin, 48:2 (2003), 125–127 | DOI

[12] O. S. Lyapkosova, N. G. Lebedev, “Piezoresistive Effect in Single-Walled Carbon Nanotubes”, Solid State Physics, 54:7 (2012), 1412–1416 | DOI

[13] W. A. Obitayo, T. Liu, “Review: Carbon Nanotube – Based Piezoresistive Strain Sensors”, Jornal of Sensors, 2012 (2012), 652438, 15 pp.

[14] V. M. Pereira, A. H. Castro Neto, N. M. R. Peres, “Tight-binding approach to uniaxial strain in graphene”, Physical Review B., 80:7, 045401 (1–8) | MR

[15] R. Saito, M. S. Dresselhaus, G. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, London, 1999, 251 pp.

[16] S. V. Tyablikov, The Methods of the Quantum Theory of Magnetism, Nauka Publ., Moscow, 1975, 528 pp. | MR

[17] M. V. Vostrikov, “Creation of a Micro-Electromechanical Element Base Based on MEMS Technology”, High Technology. MSTU named after N.E. Bauman, 2007, 223–228