Keywords: Bessel modified functions, asymptotic, bisingularly problem, Dirichlet problem, boundary layer function, small parameter.
@article{VVGUM_2018_21_1_a4,
author = {D. A. Tursunov},
title = {Asymptotics of the solution of the {Dirichlet} problem with singularity inside the ring},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {44--52},
year = {2018},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a4/}
}
TY - JOUR AU - D. A. Tursunov TI - Asymptotics of the solution of the Dirichlet problem with singularity inside the ring JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 44 EP - 52 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a4/ LA - ru ID - VVGUM_2018_21_1_a4 ER -
D. A. Tursunov. Asymptotics of the solution of the Dirichlet problem with singularity inside the ring. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 1, pp. 44-52. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a4/
[1] K. Alymkulov, D. A. Tursunov, “A Method for Constructing Asymptotic Expansions of Bisingularly Perturbed Problems”, Russian Mathematics, 2016, no. 12, 3–11 | MR | Zbl
[2] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Nauka Publ., Moscow, 1989, 464 pp.
[3] A. M. Ilyin, Matching of Asymptotic Expansions of Boundary Value Problems, Nauka Publ., Moscow, 1989, 334 pp.
[4] D. A. Tursunov, U. Z. Erkebaev, “Asymptotic of the Solution to the Bisingular Perturbed Dirichlet Problem in the Ring With Quadratic Growth on the Boundary”, Bulletin of the South Ural State University. Series “Mathematics. Mechanics. Physics”, 8:2 (2016), 52–61 | Zbl
[5] D. A. Tursunov, U. Z. Erkebaev, “Asymptotic of the Solution of the Dirichlet Problem for a Bisingularly Perturbed Equation in a Ring”, Bulletin of the Udmurt University. Mathematics. Mechanics. Computer Science, 25:4 (2015), 517–525 | Zbl
[6] D. A. Tursunov, U. Z. Erkebaev, “Asymptotic Expansions of Solutions to Dirichlet problem for Elliptic Equation with Singularities”, Ufa Mathematical Journal, 8:1 (2016), 102–112 | Zbl
[7] M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations, Nauka Publ., Moscow, 1983, 352 pp.
[8] P. P. N. de Groen, Critical points of the degenerate operator in elliptic singular perturbation problem, ZW 28/75, Mathematish Centrum, Amsterdam, 1975, 67 pp.
[9] W. Eckhaus, E. M. de Jager, “Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type”, Arch. Rat. Mech. Anal, 23:1 (1966), 26–86 | DOI | MR | Zbl
[10] W. Eckhaus, “Boundary layers in linear elliptic singular perturbation problems”, SIAM Rev., 14 (1972), 225–270 | DOI | MR | Zbl
[11] N. Levinson, “The first boundary value problem for $\varepsilon \Delta u+Au_{x}+Bu_{y}+Cu = D$ for small $\varepsilon$”, Ann. of Math., 51 (1950), 428–445 | DOI | MR | Zbl