Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_1_a0, author = {A. I. Vahabov}, title = {The task of basis property of root functions of differential sheaf of the $2n$d order with $n$-fold characteristics}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {5--10}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a0/} }
TY - JOUR AU - A. I. Vahabov TI - The task of basis property of root functions of differential sheaf of the $2n$d order with $n$-fold characteristics JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 5 EP - 10 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a0/ LA - ru ID - VVGUM_2018_21_1_a0 ER -
%0 Journal Article %A A. I. Vahabov %T The task of basis property of root functions of differential sheaf of the $2n$d order with $n$-fold characteristics %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2018 %P 5-10 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a0/ %G ru %F VVGUM_2018_21_1_a0
A. I. Vahabov. The task of basis property of root functions of differential sheaf of the $2n$d order with $n$-fold characteristics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 1, pp. 5-10. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_1_a0/
[1] A. I. Vagabov, “About the Equiconvergence of Decomposition in a Trigonometrical Fourier Series and by the Main Functions of Ordinary Differential Operators”, Izv. AN SSSR. Seriya matematicheskaya, 48:3 (1984), 614–630 | MR | Zbl
[2] A. I. Vagabov, “$n$-Fold Expansion Formula in Fourier Series by Root Elements of a Differential Sheaf with the $n$-Fold Characteristic”, Differentsialnye uravneniya, 52:2 (2016), 555–560 | DOI | Zbl
[3] M. A. Naymark, Linear Differential Operators, Nauka Publ., Moscow, 1969, 526 pp.