Mathematical modeling of phase-sensitive mode of radar pulse strobing scheme
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a mathematical model of the radar pulse stroboscopic transformer, which consists of a multiplier and a narrowband filter tuned to the carrier difference frequency $\Omega$. Additional capabilities of the transformer which allow extending its area of application in short radar signal phase measurements are studied. An asymptotic approach to anaysis is used which assumes a large time scale transformation factor $(N\gg1)$ and strobing radar pulses significantly shorter than input signals. It is shown that shifting the strobing pulse carrier frequency by an odd multiple of the first subharmonic of the strobing frequency allows transforming the radar signal’s phase structure into envelope modulation without employing additional phase-sensitive elements. Phase structure measurement can then be performed on a low intermediate frequency using amplitude methods. Results of seminatural modelling of the stroboscopic transformer phase-sensitive operation mode are presented, which were obtained on an experimental model built using ATmega16 and STM32F407 MCUs and a PC. It is shown that if the clock frequency is synchronized to the second harmonic of the difference frequency $\Omega$, additional phase modulation $\Delta\theta(t)=\pi t/NT$) (appears in the signal’s complex envelope, where $T$ is the input signal repetition period, $N$ is the time scale transformation factor. As a result, this value appears to the stroboscopic processing system as carrier Doppler shift. Estimation of surplus phase $\Delta\varphi$ accumulated for the transformed signal duration $\tilde{\tau}_u=N\tau_u$ yields $\Delta\varphi=\alpha\pi$, which doesn’t depend on the spectral transformation factor $N$ and is solely determined by the signal duty cycle $\alpha=\tau_u/T$.
Keywords: stroboscopic transformation, narrowband signal, mathematical and seminatural modelling, in-pulse phase modulation, radioimpulse strobing, phase-sensitive mode.
@article{VVGUM_2017_2_a7,
     author = {V. D. Zakharchenko and O. V. Pak},
     title = {Mathematical modeling of phase-sensitive mode of radar pulse strobing scheme},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {75--81},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a7/}
}
TY  - JOUR
AU  - V. D. Zakharchenko
AU  - O. V. Pak
TI  - Mathematical modeling of phase-sensitive mode of radar pulse strobing scheme
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 75
EP  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a7/
LA  - ru
ID  - VVGUM_2017_2_a7
ER  - 
%0 Journal Article
%A V. D. Zakharchenko
%A O. V. Pak
%T Mathematical modeling of phase-sensitive mode of radar pulse strobing scheme
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 75-81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a7/
%G ru
%F VVGUM_2017_2_a7
V. D. Zakharchenko; O. V. Pak. Mathematical modeling of phase-sensitive mode of radar pulse strobing scheme. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 75-81. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a7/

[1] L.\;Yu. Astanin, A.\;A. Kostylev, Fundamentals of Ultra-Wideband Radar Measurements, Radio i svyaz Publ., Moscow, 1989, 192 pp.

[2] V.\;D. Zakharchenko, “Issues of the Theory of Stroboscopic Transformation of Narrow-Band Periodic Signals”, Izv. Vuzov SSSR. Priborostroenie, 1976, no. 10, 5–8

[3] V.\;D. Zaharchenko, O.\;V. Pak, “Modeling of the Radio-Impulse Stroboscopic Converter”, Methods and Devices of Signal Generation and Processing in Information Systems: Interuniversity Collection of Scientific Works, 2010, 5–8, RGRTU Publ., Ryazan

[4] V.\;D. Zaharchenko, “Processing of Complex Radio Signals by Stroboscopic Methods”, Radiotekhnika i elektronika, 1980, no. 10, 2099–2104

[5] V.\;D. Zaharchenko, “On the Initial Phase of a Signal under Stroboscopic Transformation”, Izv. Vuzov SSSR. Priborostroenie, 1980, no. 1, 74–76

[6] A.\;I. Naydenov, Transformation of the Spectrum of Nanosecond Impulses, Sov. radio Publ., Moscow, 1973, 180 pp.

[7] V.\;D. Zakharchenko, P.\;V. Balandin, Method of Radar Control of an Extended Space, Patent of the Russian Federation no. 2359286 of October 4, 2006

[8] V.\;D. Zakharchenko, I.\;G. Kovalenko, A Method of Preventing Threat to the Planet by Estimating the Size of Passive Space Objects, Patent of the Russian Federation no. 2527252 of June 7, 2013

[9] Yu.\;A. Ryabinin, Stroboscopic Oscillography, Sov. radio Publ., Moscow, 1972, 272 pp.

[10] Eh. Ifeachor, B. Jervis, Digital signal processing : a practical approach, Prentice Hall, Harlow, England; New York, 2002, 933 pp.

[11] V.\;D. Zakharchenko, I.\;G. Kovalenko, O.\;V. Pak, “Estimate of sizes of small asteroids (cosmic bodies) by the method of stroboscopic radiolocation”, Acta Astronautica, 108 (2015), 57–61 | DOI