Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_2_a4, author = {E. G. Grigor'eva and V. A. Klyachin and A. A. Klyachin}, title = {Universal software for solving multidimensional variational problems}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {39--55}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a4/} }
TY - JOUR AU - E. G. Grigor'eva AU - V. A. Klyachin AU - A. A. Klyachin TI - Universal software for solving multidimensional variational problems JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 39 EP - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a4/ LA - ru ID - VVGUM_2017_2_a4 ER -
%0 Journal Article %A E. G. Grigor'eva %A V. A. Klyachin %A A. A. Klyachin %T Universal software for solving multidimensional variational problems %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 39-55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a4/ %G ru %F VVGUM_2017_2_a4
E. G. Grigor'eva; V. A. Klyachin; A. A. Klyachin. Universal software for solving multidimensional variational problems. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 39-55. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a4/
[1] E.\;G. Grigoryeva, V.\;A. Klyachin, “Identifying Algorithm for Boundary Points of 3D Models”, Geometricheskiy analiz i ego prilozheniya: materialy III Mezhdunar. nauch. shk.-konf., 2016, 114–116, Izd-vo VolGU Publ., Volgograd
[2] E.\;G. Grigoryeva, V.\;A. Klyachin, “Numerical Study of the Stability of Equilibrium Surfaces Using NumPy Package”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 2 (27), 17–30
[3] A.\;A. Klyachin, V.\;A. Klyachin, E.\;G. Grigoryeva, “Visualization of Calculation of Minimal Area Surfaces”, Nauchnaya vizualizatsiya. Elektronnyy zhurnal, 6:2 (2014), 34–42 | MR
[4] A.\;A. Klyachin, V.\;A. Klyachin, E.\;G. Grigoryeva, “Visualization of Stability and Calculation of the Shape of the Capillary Equilibrium Surface”, Nauchnaya vizualizatsiya. Elektronnyy zhurnal, 8:2 (2016), 37–52
[5] A.\;A. Klyachin, M.\;A. Gatsunaev, “On Uniform Convergence of Piecewise Linear Solutions of the Minimal Surface Equation”, Ufa Mathematical Journal, 2014, no. 6 (3), 3–16 | MR | Zbl
[6] A.\;A. Klyachin, “On the Uniform Convergence of Piecewise Linear Solutions of an Equilibrium Capillary Surface Equation”, Journal of Applied and Industrial Mathematics, 18:2 (62) (2015), 52–62 | MR | Zbl
[7] V.\;E. Mikhaylenko, S.\;N. Kovalev, Designing Forms of Modern Architectural Structures, Budivelnik Publ., Kiev, 1978, 138 pp.
[8] T. Oliphant, “Multidimensional Iterators in NumPy”, Beautiful Code, 2011, 341–358, Piter Publ., Saint Petersburg
[9] E. Gamma, R. Helm, R. Johnson, D. Vlissides, G. Booch, Design Patterns: Elements of Reusable Object-Oriented Software, Saint Petersburg, Piter Publ., 2007, 366 pp.
[10] V.\;A. Saranin, Equilibrium of Fluids and Its Stability, Institut kompyuternykh issledovaniy Publ., Moscow, 2002, 144 pp.
[11] S. Teplyakov, Design Patterns for .NET Framework, Piter Publ., Saint Petersburg, 2016, 320 pp.
[12] R. Finn, Equilibrium Capillar Surfces. Mathematical Theory, Nauka Publ., Moscow, 1989, 312 pp. | MR