Universal software for solving multidimensional variational problems
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 39-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the problem of numerical calculation of the piecewise linear surfaces $ M $, wich is extremal for the functional type $$ F(M)=\int\limits_{M}\left(\Phi(\xi)+\alpha(x)\right)dS. $$ To solve this problem, we obtain formulas for the calculation of the gradient of the functional in the space of polygonal surfaces $M$ as a set $P$ of its vertices $$ \left(\frac{\partial \tilde{F}}{\partial h}(P)\right)^i=\frac{1}{2}\langle\sum_{j=1}^k\left(\nabla \Phi(2\xi_j|T_j|)\right)\times l_j,h\rangle+\frac{1}{2}\langle\sum_{j=1}^k\alpha(p^*_j)\xi_j\times l_j,h\rangle\,+ $$ $$ +\,\frac{1}{3}\langle\sum_{j=1}^k\nabla \alpha(p^*_j)|T_j|,h\rangle. $$ For the organization of calculations on the basis of these formulas, we construct a system of classes in the Python programming language. The system is organized as a class package wich is integrated in the simulation environment 3D Blender. This solution allows the user for the program Blender in interactive mode to perform the desired surface topology modeling, to set the boundary conditions and to visualize the results of calculation. In this paper, we present our implementation of a variational method based on approximation of piecewise-linear functions and surfaces. We proceed from the idea of creating a universal software system, most of which does not depend on the use of triangulation, integral functional, computational domain and boundary conditions. In this article we present the structure of input data, which is stored in the boundary conditions, and the vertices and the triangles of the triangulation and the description of the main program procedures. We are considering a number of illustrative examples of solving boundary value problems of mathematical physics.
Keywords: extremal surface, piecewise linear approximation, NumPy package, boundary problem.
Mots-clés : triangulation
@article{VVGUM_2017_2_a4,
     author = {E. G. Grigor'eva and V. A. Klyachin and A. A. Klyachin},
     title = {Universal software for solving multidimensional variational problems},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {39--55},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a4/}
}
TY  - JOUR
AU  - E. G. Grigor'eva
AU  - V. A. Klyachin
AU  - A. A. Klyachin
TI  - Universal software for solving multidimensional variational problems
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 39
EP  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a4/
LA  - ru
ID  - VVGUM_2017_2_a4
ER  - 
%0 Journal Article
%A E. G. Grigor'eva
%A V. A. Klyachin
%A A. A. Klyachin
%T Universal software for solving multidimensional variational problems
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 39-55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a4/
%G ru
%F VVGUM_2017_2_a4
E. G. Grigor'eva; V. A. Klyachin; A. A. Klyachin. Universal software for solving multidimensional variational problems. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 39-55. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a4/

[1] E.\;G. Grigoryeva, V.\;A. Klyachin, “Identifying Algorithm for Boundary Points of 3D Models”, Geometricheskiy analiz i ego prilozheniya: materialy III Mezhdunar. nauch. shk.-konf., 2016, 114–116, Izd-vo VolGU Publ., Volgograd

[2] E.\;G. Grigoryeva, V.\;A. Klyachin, “Numerical Study of the Stability of Equilibrium Surfaces Using NumPy Package”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 2 (27), 17–30

[3] A.\;A. Klyachin, V.\;A. Klyachin, E.\;G. Grigoryeva, “Visualization of Calculation of Minimal Area Surfaces”, Nauchnaya vizualizatsiya. Elektronnyy zhurnal, 6:2 (2014), 34–42 | MR

[4] A.\;A. Klyachin, V.\;A. Klyachin, E.\;G. Grigoryeva, “Visualization of Stability and Calculation of the Shape of the Capillary Equilibrium Surface”, Nauchnaya vizualizatsiya. Elektronnyy zhurnal, 8:2 (2016), 37–52

[5] A.\;A. Klyachin, M.\;A. Gatsunaev, “On Uniform Convergence of Piecewise Linear Solutions of the Minimal Surface Equation”, Ufa Mathematical Journal, 2014, no. 6 (3), 3–16 | MR | Zbl

[6] A.\;A. Klyachin, “On the Uniform Convergence of Piecewise Linear Solutions of an Equilibrium Capillary Surface Equation”, Journal of Applied and Industrial Mathematics, 18:2 (62) (2015), 52–62 | MR | Zbl

[7] V.\;E. Mikhaylenko, S.\;N. Kovalev, Designing Forms of Modern Architectural Structures, Budivelnik Publ., Kiev, 1978, 138 pp.

[8] T. Oliphant, “Multidimensional Iterators in NumPy”, Beautiful Code, 2011, 341–358, Piter Publ., Saint Petersburg

[9] E. Gamma, R. Helm, R. Johnson, D. Vlissides, G. Booch, Design Patterns: Elements of Reusable Object-Oriented Software, Saint Petersburg, Piter Publ., 2007, 366 pp.

[10] V.\;A. Saranin, Equilibrium of Fluids and Its Stability, Institut kompyuternykh issledovaniy Publ., Moscow, 2002, 144 pp.

[11] S. Teplyakov, Design Patterns for .NET Framework, Piter Publ., Saint Petersburg, 2016, 320 pp.

[12] R. Finn, Equilibrium Capillar Surfces. Mathematical Theory, Nauka Publ., Moscow, 1989, 312 pp. | MR