Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_2_a3, author = {I. I. Strukova}, title = {Harmonic analysis of periodic at infinity functions in homogeneous spaces}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {29--38}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a3/} }
I. I. Strukova. Harmonic analysis of periodic at infinity functions in homogeneous spaces. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 29-38. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a3/
[1] A.\;G. Baskakov, I.\;A. Krishtal, “Harmonic Analysis of Causal Operators and Their Spectral Properties”, Izv. RAN. Ser. matematicheskaya, 69:3 (2005), 3–54 | DOI | MR | Zbl
[2] A.\;G. Baskakov, “Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces”, Mat. zametki, 97:2 (2015), 174–190 | DOI | Zbl
[3] A.\;G. Baskakov, “Analysis of Linear Differential Equations by Methods of the Spectral Theory of Difference Operators and Linear Relations”, UMN, 68:1 (2013), 77–128 | DOI | MR | Zbl
[4] A.\;G. Baskakov, “Bernšte n-Type Inequalities in Abstract Harmonic Analysis”, Sib. mat. zhurn., 20:5 (1979), 942–952 | MR | Zbl
[5] A.\;G. Baskakov, “On Spectral Synthesis in Banach Modules over Commutative Banach Algebras”, Mat. zametki, 34:4 (1983), 573–585 | MR | Zbl
[6] A.\;G. Baskakov, “Spectral Analysis of Differential Operators with Unbounded Operator-Valued Coefficients, Difference Relations and Semigroups of Difference Relations”, Izv. RAN. Ser. matematicheskaya, 73:2 (2009), 3–68 | DOI | MR | Zbl
[7] A.\;G. Baskakov, “Spectral Tests for the Almost Periodicity of the Solutions of Functional Equations”, Mat. zametki, 24:2 (1978), 195–206
[8] A.\;G. Baskakov, “Beurling’s Theorem for Functions with Essential Spectrum from Homogeneous Spaces and Stabilization of Solutions of Parabolic Equations”, Mat. zametki, 92:5 (2012), 643–661 | DOI | MR | Zbl
[9] A.\;G. Baskakov, “Theory of Representations of Banach Algebras, and Abelian Groups and Semigroups in the Spectral Analysis of Linear Operators”, SMFN, 9 (2004), 3–151 | Zbl
[10] N. Wiener, Fourier Integral and Some of Its Applications, Nauka Publ., Moscow, 1963, 256 pp.
[11] Yu.\;L. Daletskiy, M.\;G. Kreyn, Stability of Solutions of Differential Equations in Banach Space, Nauka Publ., Moscow, 1970, 535 pp. | MR
[12] B.\;M. Levitan, Zhikov\;V. V., Almost Periodic Functions and Differential Equations, Izd-vo MGU, Moscow, 1978, 205 pp. | MR
[13] I.\;I. Strukova, “Harmonic Analysis of Periodic Vectors and Functions Periodic at Infinity”, Vestn. NGU. Ser.: mat., mekh., inform., 14:1 (2014), 98–111 | Zbl
[14] I.\;I. Strukova, “On the Harmonic Analysis of Periodic at Infinity Functions”, Izv. Sarat. univ. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:1 (2014), 28–38 | Zbl
[15] I.\;I. Strukova, “On the Wiener Theorem for Periodic at Infinity Functions”, Sib. mat. zhurn., 57:1 (2016), 186–198 | MR | Zbl
[16] I.\;I. Strukova, “Spectra of Algebras of Slowly Varying and Periodic at Infinity Functions and Banach Limits”, Vestn. VGU. Seriya: Fizika. Matematika, 2015, no. 3, 161–165 | Zbl
[17] I.\;I. Strukova, “Wiener’s Theorem for Periodic at Infinity Functions”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:4 (2012), 34–41 | Zbl
[18] I.\;I. Strukova, “Wiener’s Theorem for Periodic at Infinity Functions with Summable Weighted Fourier Series”, Ufim. mat. zhurn., 5:3 (2013), 144–152 | MR
[19] E. Hille, R.\;S. Phillips, Functional Analysis and Semi-Groups, IL Publ., Moscow, 1962, 829 pp. | MR
[20] A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 7–26 | MR
[21] K.\;-J. Engel, R. Nagel, A short course on operator semigroups, Universitext, Springer, New York, 2006, 247 pp. | MR | Zbl