Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_2_a2, author = {A. A. Klyachin}, title = {The construction of the triangulation of plane domains by grinding method}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {18--28}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a2/} }
A. A. Klyachin. The construction of the triangulation of plane domains by grinding method. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 18-28. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a2/
[1] S.\;M. Aleynikov, A.\;A. Sedaev, “Algorithm of mesh formation in the boundary element method for plane regions”, Mathematical modeling, 1995, no. 7 (7), 81–93 | MR
[2] N.\;V. Baydakova, “Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations”, Tr. IMM UrO RAN, 17:3 (2011), 83–97
[3] N.\;V. Baydakova, “New estimates of the error of approximation of derivatives of the interpolation functions of polynomials of the third degree on a triangle”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1 (2) (2013), 15–19 | Zbl
[4] V.\;A. Klyachin, “Triangulation algorithm based on empty convex set condition”, Science Journal of Volgograd State University. Mathematics. Physics, 28:3 (2015), 27–33 | MR
[5] V.\;A. Klyachin, D.\;V. Shurkaeva, “Simplex isoperimetricity factor in the problem of approximation of derivatives”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:2 (2015), 151–160
[6] V.\;A. Klyachin, A.\;A. Shirokiy, “The Delaunay triangulation for multidimensional surfaces”, Vestnik of Samara State University, 78:4 (2010), 51–55
[7] V.\;A. Klyachin, A.\;A. Shirokiy, “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Mathematics, 2012, no. 1, 31–39 | MR | Zbl
[8] N.\;V. Latypova, “The error of interpolation polynomials of the sixth degree on a triangle”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2003, 3–10
[9] Yu.\;V. Matveeva, “On Hermite interpolation third-degree polynomials on a triangle using mixed derivatives”, Saratov University News. New Series. Series Mathematics. Mechanics. Informatics, 7:1 (2007), 23–27
[10] Yu.\;V. Nemirovskiy, S.\;F. Pyataev, “Automated triangulation of multiply connected domains with concentration and rarefaction of nodes”, Computational Technologies, 2000, no. 5 (2), 82–91
[11] A.\;V. Skvortsov, “Algorithms for constructing a triangulation with restrictions”, Numerical Methods and Programming, 2002, no. 3, 82–92
[12] A.\;V. Skvortsov, “Review algorithms for constructing Delaunay triangulation”, Numerical Methods and Programming, 2002, no. 3, 14–39
[13] Yu.\;N. Subbotin, “Dependence of the estimates of approximation by interpolation polynomials of the fifth degree of the geometrical characteristics of the triangle”, Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2 (1992), 110–119 | Zbl
[14] Yu.\;N. Subbotin, “The dependence of estimates of a multidimensional piecewise polynomial approximation on the geometric characteristics of a triangulation”, Proceedings of the Steklov Institute of Mathematics, 189 (1989), 117–137
[15] I. Babuska, A.\;K. Aziz, “On the angle condition in the finite element method”, SIAM J. Numer. Anal., 13:2 (1976), 214–226 | DOI | MR | Zbl