On distributions with special quasi-sasakian structure
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 6-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the notion of an almost contact metric structure $(M, \vec{\xi}, \eta, \varphi, g, D)$ of the first order is introduced. On an almost contact metric manifold $M$ satisfying the condition $rk d\eta=2p,$ $2p2m,$ $2p \neq 0,$ is defined the integrable distribution $K$ that is equal to the kernel of the form $\omega=d \eta.$ In this case, on the manifold $M$ appears the decomposition $TM=L\oplus L^{\bot}\oplus D^{\bot},$ where $L^{\bot}=K\cap D,$ and $L$ is its orthogonal distribution in $D.$ An almost contac metric structure is called in the paper the structure of the first order, if the distribution $L$ is invariant under the action of the endomorphism $\varphi.$ If an almost contact metric structure of the first order is a quasi-Sasakian structure and it holds $d \eta(\vec{x},\vec{y})=\Omega(\vec{x},\vec{y}),$ $\vec{x},\vec{y}\in \Gamma(L),$ where $\Omega(\vec{x},\vec{y})$ is the fundamental form of the structure, then such a structure is called a special quasi-Sasakian structure (SQS-structure), and the manifold $M$ is called a SQS-manifold. On the manifold $M,$ an interior connection $\nabla$ and the corresponding associated connection $\nabla^A$ are defined. The curvature tensor of the interior connection is called the Schouten tensor. The properties of the Schouten tensor are studied. In particular, it is shown that the Schouten tensor is zero if and only if there exists an atlas consisting of adapted charts with respect to that the Christoffel components of the interior connection are zero. The distribution of an almost contact metric structure with zero Schouten tensor is called in the paper the distribution of zero curvature. On the distribution $D$ of a manifold $M$ with a contact metric structure $(M, \vec{\xi}, \eta, \varphi, g, D),$ an almost contact metric structure $(D,J,\vec{u},\lambda=\eta\circ \pi_{*},\tilde{g},\tilde{D}),$ is defined, which is a structure of the first order, and it is called an extended almost contact metric structure. It is shown that an extended structure is a SQS-structure, if the initial manifold $M$ is a Sasakian manifold with a distribution of zero curvature.
Keywords: quasi-Sasakian manifolds, interior connection, associated connection, Schouten curvature tensor, distribution of zero curvature.
@article{VVGUM_2017_2_a1,
     author = {S. V. Galaev},
     title = {On distributions with special quasi-sasakian structure},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--17},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a1/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - On distributions with special quasi-sasakian structure
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 6
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a1/
LA  - ru
ID  - VVGUM_2017_2_a1
ER  - 
%0 Journal Article
%A S. V. Galaev
%T On distributions with special quasi-sasakian structure
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 6-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a1/
%G ru
%F VVGUM_2017_2_a1
S. V. Galaev. On distributions with special quasi-sasakian structure. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 6-17. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a1/

[1] A.\;V. Bukusheva, “The geometry of the contact metric spaces with $\varphi$-connection”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 40:17 (214) (2015), 20–24

[2] A.\;V. Bukusheva, “Foliation on Distribution with Finslerian Metric”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:3 (2014), 247–251 | Zbl

[3] V.\;V. Vagner, “The geometry of a $(n-1)$-dimensional nonholonomic manifold in a $n$-dimensional space”, Tr. seminara po vektornomu i tenzornomu analizu, 1941, no. 5, 173–255, Moscow Univ. Press, Moscow | MR

[4] S.\;V. Galaev, “The intrinsic geometry of almost contact metric manifolds”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:1 (2012), 16–22 | Zbl

[5] S.\;V. Galaev, “Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure”, Siberian Mathematical Journal, 57:3 (2016), 632–640 | DOI | MR | Zbl

[6] S.\;V. Galaev, “Almost contact Kählerian manifolds of constant holomorphic sectional curvature”, Russian Mathematics, 2014, no. 8, 42–52 | DOI | Zbl

[7] S.\;V. Galaev, “Almost Contact Metric Spaces with $N$-connection”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:3 (2015), 258–264 | DOI | Zbl

[8] S.\;V. Galaev, “Almost contact metric structures defined by $N$-prolonged connection”, Mathematical Notes of NEFU, 2015, no. 1, 25–34 | MR | Zbl

[9] V.\;F. Kirichenko, A.\;R. Rustanov, “Differential geometry of quasi-Sasakian manifolds”, Sbornik: Mathematics, 193:8 (2002), 71–100 | DOI | Zbl

[10] A.\;F. Solov’ev, “Contact metric manifolds and Chern classes”, Russian Mathematics, 1987, no. 1 (296), 33–41 | MR | Zbl

[11] D.\;E. Blair, Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin, New York, 1976, 148 pp. | MR | Zbl

[12] C.\;P. Boyer, K. Galicki, P. Matzeu, “On eta-Einstein Sasakian geometry”, Comm. Math. Phys., 262:1 (2006), 177–208 | DOI | MR | Zbl

[13] J. Schouten, E. van Kampen, “Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl

[14] L. Vezzoni, “Connections on contact manifolds and contact twistor spaces”, Israel J. Math., 2010, no. 178, 253–267 | DOI | MR | Zbl