Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_2_a1, author = {S. V. Galaev}, title = {On distributions with special quasi-sasakian structure}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {6--17}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a1/} }
S. V. Galaev. On distributions with special quasi-sasakian structure. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 6-17. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a1/
[1] A.\;V. Bukusheva, “The geometry of the contact metric spaces with $\varphi$-connection”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 40:17 (214) (2015), 20–24
[2] A.\;V. Bukusheva, “Foliation on Distribution with Finslerian Metric”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:3 (2014), 247–251 | Zbl
[3] V.\;V. Vagner, “The geometry of a $(n-1)$-dimensional nonholonomic manifold in a $n$-dimensional space”, Tr. seminara po vektornomu i tenzornomu analizu, 1941, no. 5, 173–255, Moscow Univ. Press, Moscow | MR
[4] S.\;V. Galaev, “The intrinsic geometry of almost contact metric manifolds”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:1 (2012), 16–22 | Zbl
[5] S.\;V. Galaev, “Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure”, Siberian Mathematical Journal, 57:3 (2016), 632–640 | DOI | MR | Zbl
[6] S.\;V. Galaev, “Almost contact Kählerian manifolds of constant holomorphic sectional curvature”, Russian Mathematics, 2014, no. 8, 42–52 | DOI | Zbl
[7] S.\;V. Galaev, “Almost Contact Metric Spaces with $N$-connection”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:3 (2015), 258–264 | DOI | Zbl
[8] S.\;V. Galaev, “Almost contact metric structures defined by $N$-prolonged connection”, Mathematical Notes of NEFU, 2015, no. 1, 25–34 | MR | Zbl
[9] V.\;F. Kirichenko, A.\;R. Rustanov, “Differential geometry of quasi-Sasakian manifolds”, Sbornik: Mathematics, 193:8 (2002), 71–100 | DOI | Zbl
[10] A.\;F. Solov’ev, “Contact metric manifolds and Chern classes”, Russian Mathematics, 1987, no. 1 (296), 33–41 | MR | Zbl
[11] D.\;E. Blair, Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin, New York, 1976, 148 pp. | MR | Zbl
[12] C.\;P. Boyer, K. Galicki, P. Matzeu, “On eta-Einstein Sasakian geometry”, Comm. Math. Phys., 262:1 (2006), 177–208 | DOI | MR | Zbl
[13] J. Schouten, E. van Kampen, “Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl
[14] L. Vezzoni, “Connections on contact manifolds and contact twistor spaces”, Israel J. Math., 2010, no. 178, 253–267 | DOI | MR | Zbl