Influence of the atomic-molecular structure on tunnel characteristics in carbon nanostructures
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 6, pp. 63-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the effect of the atomic-molecular structure of graphene nanoribbons on their properties, as well as the behavior of these materials under extreme conditions - in electric and magnetic fields. The physical and chemical properties of solids have always attracted the serious attention of researchers. Over the last twenty years, the research area has been shifting towards the physics of semiconductor low-dimensional structures (nanostructures), which is facilitated by the rapid development of technology, the discovery of new materials that can replace existing analogues. The limited charge motion in nanostructures leads to a dimensional quantization, which provokes significant changes in the energy spectrum of charge carriers, phonons, quasiparticles, and promotes the appearance of new phenomena and the physical-chemical properties of substance. Agreater number of investigations are connected with the study of graphene-like materials possessing a unique set of properties, which makes them attractive from the point of view of modern micro-, nano- and optoelectronics (the creation of transistors, nanodiodes, memory elements, optical switches, etc.). One of the main advantages of nanostructures is that the change in configuration and geometric dimensions affects the properties of the system and allows managing these properties [9]. Thus, we can modify the energy spectrum of charge carriers, thereby changing the physical-chemical properties of the system. The purpose of the present research is to study the sensory characteristics of carbon structures on the basis of the tunnel effect, including in the case of curved graphene.
Keywords: electron transfer, atomic-molecular structure, graphene nanoribbons, defects.
Mots-clés : admixtures
@article{VVGUM_2017_20_6_a5,
     author = {N. N. Konobeeva},
     title = {Influence of the atomic-molecular structure on tunnel characteristics in carbon nanostructures},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a5/}
}
TY  - JOUR
AU  - N. N. Konobeeva
TI  - Influence of the atomic-molecular structure on tunnel characteristics in carbon nanostructures
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 63
EP  - 71
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a5/
LA  - ru
ID  - VVGUM_2017_20_6_a5
ER  - 
%0 Journal Article
%A N. N. Konobeeva
%T Influence of the atomic-molecular structure on tunnel characteristics in carbon nanostructures
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 63-71
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a5/
%G ru
%F VVGUM_2017_20_6_a5
N. N. Konobeeva. Influence of the atomic-molecular structure on tunnel characteristics in carbon nanostructures. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 6, pp. 63-71. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a5/

[1] N. Birrel, P. Davis, Quantum Fields in Curved Space-Time, Mir Publ., Moscow, 1984, 356 pp.

[2] N. N. Konobeeva, M. B. Belonenko, “The Influence of a Multilevel Admixture on the Tunnel and Ballistic Current in a Graphene Nanoribbon”, Izvestiya vysshikh uchebnykh zavedeniy. Fizika, 60:1 (2017), 104–108

[3] N. N. Konobeeva, M. B. Belonenko, “Influence of a Constant Electric Field on the Conductivity of Graphene Nanoribbons”, Izvestiya vysshikh uchebnykh zavedeniy. Fizika, 60:9 (2017), 144–148

[4] N. N. Konobeeva, “Modeling the Impact of Admixture on the Tunnel Contact Current of a Polymer with Quantum Dots and Metal”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:5 (2017), 89–93 | DOI | MR

[5] L. S. Levitov, A. V. Shitov, Green's Functions. Problems with Solutions, Fizmatlit Publ., Moscow, 2003, 392 pp.

[6] D. A. Areshkin, D. Gunlycke, C. T. White, “Ballistic Transport in Graphene Nanostrips in the Presence of Disorder: Importance of Edge Effects”, Nano Lett, 7 (2007), 204–210 | DOI

[7] L. Chen, H. Hu, Yu. Quyang, H. Z. Pan, Y. Y. Sun, F. Liu, “Atomic chemisorption on graphene with Stone – Thrower – Wales defects”, Carbon, 49 (2011), 3356–3361 | DOI

[8] F. Banhart, J. Kotakoski, A. V. Krasheninnikov, “Structural Defects in Graphene”, ACS Nano, 5:1 (2011), 26–41 | DOI

[9] G. Bastard, Wave mechanics applied to semiconductor heterostructures, Les Editions de Physique, Les Ulis, 1988, 360 pp.

[10] L. Brey, H. A. Fertig, “Electronic states of graphene nanoribbons”, Physical Review B, 73 (2006), 235411 | DOI

[11] L. Chen, J. Li, D. Li, M. Wei, X. Wang, “Chemical functionalization of graphene by H adsorption on Stone–Thrower–Wales defects”, Solid State Commun, 152 (2012), 1985 | DOI

[12] A. Cortijo, M. A. H. Vozmediano, “Electronic properties of curved graphene sheets”, Europhysics Letters, 77 (2007), 47002 | DOI

[13] A. Cortijo, M. A. H. Vozmediano, “Effects of topological defects and local curvature on the electronic properties of planar graphene”, Nuclear Physics B, 763 (2007), 293–308 | DOI | Zbl

[14] J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, A. Zettl, “Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes”, Nano Lett, 8 (2008), 3582–3586 | DOI

[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, 306 (2004), 666–669 | DOI

[16] M. B. Belonenko, N. G. Lebedev, N. N. Yanyushkina, A. V. Zhukov, M. Paliy, “Electronic spectrum and tunneling current in curved graphene nanoribons”, Solid State Communications, 151 (2011), 1147–1150 | DOI

[17] M. B. Belonenko, N. G. Lebedev, A. V. Zhukov, N. N. Yanyushkina, “Electron spectrum and tunneling current of the toroidal and helical Graphene nanoribbon-quantum dots contact”, ISRN Nanotechnology, 2011 (2011), 161849, 1–5 | DOI

[18] D. Gunlycke, C. White, “Tight-binding energy dispersions of armchair-edge graphene nanostrips”, Phys. Rev. B, 77 (2008), 115116 | DOI

[19] Zh. Yan, Y. Liu, J. Lin, Zh. Peng, G. Wang, E. Pembroke, H. Zhou, Ch. Xiang, A.-R. O. Raji, E. L. G. Samuel, T. Yu, B. I. Yakobson, J. M. Tour, “Hexagonal Graphene Onion Rings”, J. Am. Chem. Soc, 135 (2013), 10755–10762 | DOI

[20] C. T. White, J. Li, D. Gunlycke, J. W. Mintmire, “Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips”, Nano Lett, 7 (2007), 825–830 | DOI

[21] D. V. Kolesnikov, V. A. Osipov, “Electronic structure of negatively curved graphene”, JETP Letters, 87 (2008), 419–422 | DOI

[22] N. N. Konobeeva, M. B. Belonenko, “Conductivity of impurity graphene nanoribbons and gate electric field”, Modern Physics Letters B, 31 (2017), 1750340 | DOI | MR

[23] N. N. Konobeeva, “Defects in graphene nanoribbons and flakes: influence on the conductivity”, Journal of nano- and electronic physics, 9:5 (2017), 05049 | DOI

[24] N. N. Konobeeva, M. B. Belonenko, “Sensitivity of graphene flakes and nanorings to impurities”, Physica B: Condensed Matter, 514 (2017), 51–53 | DOI

[25] N. N. Konobeeva, M. B. Belonenko, “Zitterbewegung in curved graphene”, Physica B: Condensed matter, 456 (2015), 115–117 | DOI

[26] V. N. Mantsevich, N. S. Maslova, “Different behaviour of local tunneling conductivity for deep and shallow impurities due to Coulomb interaction”, Solid State Commun, 150 (2010), 2072–2075 | DOI

[27] E. T. Hu, G. Q. Yue, R. J. Zhang, Y. X. Zheng, L. Y. Chen, S. Y. Wang, “Numerical simulations of multilevel impurity photovoltaic effect in the sulfur doped crystalline silicon”, Renewable Energy, 77 (2015), 442–446 | DOI

[28] A. V. Zhukov, R. Bouffanais, N. N. Konobeeva, M. B. Belonenko, “On the electronic spectrum in curved graphene nanoribbons”, Pisma v ZhETF, 97:7 (2013), 465–468 | DOI

[29] A. J. Stone, D. J. Wales, “Theoretical studies of icosahedral C60 and some related species”, Chem. Phys. Lett, 128 (1986), 501–503 | DOI

[30] S. V. Morozov, K. S. Novoselov, F. Schedin, D. Jiang, A. A. Firsov, A. K. Geim, “Two-dimensional electron and hole gases at the surface of graphite”, Phys. Rev. B, 72 (2005), 201401 | DOI

[31] M. Koch, F. Ample, C. Joachim, L. Grill, “Voltage-dependent conductance of a single graphene nanoribbon”, Nat. Nanotechnol, 7 (2012), 713–717 | DOI

[32] M. A. H. Vozmediano, M. I. Katsnelson, F. Guines, “Gauge fields in graphene”, Physics Reports, 496 (2010), 109–148 | DOI | MR