The hydrodinamical mechanism of jets’ formation and collimation in young star objects
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 6, pp. 51-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of numerical hydrodynamical simulation of shock shells evolution in young star objects are presented. We have shown that during the expanding process of such shell, a slowly rotating supersonic collimated jet made of accretion disk substance forms inside the shell through the development of consequence “ejection – thorus – tornado – jet”. The mechanism of outflow’s forming and collimation is only hydrodynamical and based on the conservation law of angular momentum. It must work for all accretion-jet systems. Additional factors (such as magnetic fields) can modify such mechanism, but not eliminate it. Let's list the main conclusions: 1) The jet is formed from the substance of the circumstellar disc. It has an angular momentum co-ordinated with the symmetry axis of the system. 2) If a one-sided ejection of matter takes place, then the shock wave, caused by it, passes through a thin circumstellar disk. Then it forms a shock wave (shell) on the other side of the disk. 3) At high initial ejection velocities, there is a significant elongation of the head of the shell. This is typical for many observable young star objects. 4) The formation of the jet is due to the presence of a long-lived torus-like vortex, in which the gas rotates both along the toroidal axis and around it.
Keywords: jet outflows, young star objects, Herbig - Haro objects, numerical simulation, mechanisms of collimation.
@article{VVGUM_2017_20_6_a4,
     author = {N. M. Kuz'min and S. S. Khrapov and V. V. Musts{\cyre}voy},
     title = {The hydrodinamical mechanism of jets{\textquoteright} formation and collimation in young star objects},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a4/}
}
TY  - JOUR
AU  - N. M. Kuz'min
AU  - S. S. Khrapov
AU  - V. V. Mustsеvoy
TI  - The hydrodinamical mechanism of jets’ formation and collimation in young star objects
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 51
EP  - 62
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a4/
LA  - ru
ID  - VVGUM_2017_20_6_a4
ER  - 
%0 Journal Article
%A N. M. Kuz'min
%A S. S. Khrapov
%A V. V. Mustsеvoy
%T The hydrodinamical mechanism of jets’ formation and collimation in young star objects
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 51-62
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a4/
%G ru
%F VVGUM_2017_20_6_a4
N. M. Kuz'min; S. S. Khrapov; V. V. Mustsеvoy. The hydrodinamical mechanism of jets’ formation and collimation in young star objects. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 6, pp. 51-62. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a4/

[1] N. M. Kuzmin, V. V. Mustsevoy, S. S. Khrapov, “The Investigation of Dispersion Properties of Small Perturbations in Jet Outflows From Young Stars”, Science Journal of Volgograd State University. Mathematics. Physics, 2002, no. 7, 76–94

[2] N. M. Kuzmin, V. V. Mustsevoy, S. S. Khrapov, “Numerical Modeling of the Evolution of Unstable Modes of Jets From Young Stellar Objects”, Astronomy Reports, 84:12 (2007), 1089–1098

[3] K. A. Levin, V. V. Mustsevoy, S. S. Khrapov, “Jets and Disks Around Young Stars”, Astronomy Reports, 76:2 (1999), 126–135

[4] P. E. Hardee, J. M. Stone, “The Stability of Radiatively Cooling Jets I. Linear Analysis”, Astrophysical Journal, 483 (1997), 121–335 | DOI

[5] B. van Leer, “Towards the Ultimate Conservative Difference Scheme V. A Second Order Sequel to Godunov’s Method”, Journal of Computational Physics, 32:1 (1979), 101–136 | DOI | MR | Zbl

[6] L. T. Little, “Interstellar Molecular Discs around Young Stars”, Quarterly Journal of the Royal Astronomical Society, 35 (1994), 11–42

[7] J. MacDonald, M. E. Bailey, “The Evolution of Flows of Stellar Mass Loss in Active Galaxies”, Monthly Notices of the Royal Astronomical Society, 197 (1981), 995–1019 | DOI

[8] R. Mundt, T. P. Ray, A. C. Raga, “Collimation of Stellar Jets – Constraints from the Observed Spatial Structure II. Observational Results”, Astronomy and Astrophysics, 252 (1991), 740–761

[9] R. Mundt, “Jets from Young Stars – Estimates of their Physical Parameters”, Canadian Journal of Physics, 64 (1986), 407–413 | DOI | MR

[10] R. Mundt, “Jets from Young Stars”, Mitteilungen der Astronomischen Gesellschaft Hamburg, 70 (1987), 100–115

[11] R. Mundt, E. W. Brugel, T. Buehrke, “Jets from Young Stars — CCD Imaging, Long-Slit Spectroscopy, and Interpretation of Existing Data”, Astrophysical Journal, 319 (1987), 275–303 | DOI

[12] R. Ouyed, R. E. Pudritz, “Numerical Simulations of Astrophysical Jets from Keplerian Disks I. Stationary Models”, Astrophysical Journal, 482 (1997), 712–732 | DOI

[13] A. C. Raga, R. Mundt, T. P. Ray, “Collimation of stellar jets — Constraints from the Observed Spatial Structure I. Data Analysis Methods”, Astronomy and Astrophysics, 252 (1991), 733–739