Algorithms for the classification of diseases of paired organs on the basis of neural networks and fuzzy sets
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 6, pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce two algorithms for diagnosing diseases of paired organs by the method of combined radio thermometry. The first one is based on neural networks and the second one is based on the apparatus of fuzzy sets. We consider a new modification of the neural network architecture for constructing the neural network algorithm, which involves the automatic addition of neurons to the output layer during the learning of the neural network. Computational experiments were carried out to diagnose varicose leg diseases and breast diseases. These experiments showed that this modification improves the efficiency of the algorithm by $10-12 \%$. The diagnostic algorithm based on fuzzy sets on the grounds of diagnosis builds fuzzy sets, after which the diagnosis is set by a method analogous to the method of non-compensatory aggregation. Besides, the algorithm was tested for varicose diseases and breast diseases.
Keywords: data mining, microwave radiothermometry, intelligent advisory systems, mammalogy, phlebology.
@article{VVGUM_2017_20_6_a2,
     author = {A. V. Zenovich and V. I. Grebnev and F. G. Primach{\cyre}nko},
     title = {Algorithms for the classification of diseases of paired organs on the basis of neural networks and fuzzy sets},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {26--37},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a2/}
}
TY  - JOUR
AU  - A. V. Zenovich
AU  - V. I. Grebnev
AU  - F. G. Primachеnko
TI  - Algorithms for the classification of diseases of paired organs on the basis of neural networks and fuzzy sets
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 26
EP  - 37
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a2/
LA  - ru
ID  - VVGUM_2017_20_6_a2
ER  - 
%0 Journal Article
%A A. V. Zenovich
%A V. I. Grebnev
%A F. G. Primachеnko
%T Algorithms for the classification of diseases of paired organs on the basis of neural networks and fuzzy sets
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 26-37
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a2/
%G ru
%F VVGUM_2017_20_6_a2
A. V. Zenovich; V. I. Grebnev; F. G. Primachеnko. Algorithms for the classification of diseases of paired organs on the basis of neural networks and fuzzy sets. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 6, pp. 26-37. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a2/

[1] A. V. Zenovich, V. A. Glazunov, A. S. Oparin, F. G. Primachenko, “Algorithms of Decision-Making in Intelligent Advisory System for Diagnostics of the Mammary Glands”, Science Journal of Volgograd State University. Mathematics. Physics, 2016, no. 6 (31), 129–142 | MR

[2] F. T. Aleskerov, D. A. Yuzbashev, V. I. Yakuba, “Intelligent Analysis of the Thermometric Data in the Diagnosis of Breast”, Automation and Remote Control, 2007, no. 1, 147–152 | MR | Zbl

[3] D. A. Vedenyapin, A. G. Losev, “About One Neural Network Model of Diagnosis of Venous Diseases”, Upravlenie bolshimi sistemami, 2012, no. 39, 219–229

[4] S. G. Vesnin, A. M. Kaplan, R. S. Avakyan, “Modern Microwave Radiothermometry of Mammary Glands”, Meditsinskiy almanakh, 2008, no. 3, 82–87

[5] T. V. Zamechnik, N. S. Ovcharenko, S. I. Larin, A. G. Losev, “Reliability Assessment of Combined Thermography as a Method for the Characteristic of the Lower Limb Venous System”, Flebologiya, 3:4 (2010), 23–26

[6] B. A. Kobrinskiy, “Consulting Intelligent Medical Systems: Classification, Principles of Construction, Efficiency”, Vrach i informatsionnye tekhnologii, 2008, no. 2, 38–47

[7] A. G. Losev, V. V. Levshinskiy, “Intelligent Analysis of Microwave Radiometry Data in the Diagnosis of Breast Cancer”, Mathematical Physics and Computer Simulation, 2017, no. 5, 49–62

[8] A. G. Losev, V. V. Levshinskiy, “Intelligent Analysis of the Thermometric Data in the Diagnosis of Breast”, Upravlenie bolshimi sistemami, 2017, no. 70, 113–135

[9] A. G. Losev, E. A. Mazepa, Kh. M. Suleymanova, “The Relationship Between Some Signs of RTM- Diagnosis of Breast Diseases”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 4 (29), 35–44

[10] A. G. Losev, E. A. Mazepa, T. V. Zamechnik, “Some Typical Symptoms in the Diagnosis of Breast Pathology According to Microwave Radiometry”, Sovremennye problemy nauki i obrazovaniya, 2014, no. 6, 16587

[11] E. V. Anisimova, T. V. Zamechnik, A. G. Losev, E. A. Mazepa, “Some Characteristic Signs in Diagnostics of Venous Diseases of Lower Extremities by the Method of Combined Thermography”, Vestnik novykh meditsinskikh tekhnologiy, 2011, no. 18 (2), 329–330

[12] A. G. Losev, A. V. Khoperskov, A. S. Astakhov, Kh. M. Suleymanova, “Problems of Measurement and Modeling of Thermal and Radiation Fields in Biological Tissues: Analysis of Microwave Thermometry Data”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 6 (31), 31–71

[13] T. V. Zamechnik, S. I. Larin, A. G. Losev, N. S. Ovcharenko, “The Way of the Combined Thermometry and Mathematical Models of Probabilistic Diagnostics of Diseases of the Lower Limbs Veines”, Vestnik novykh meditsinskikh tekhnologiy, 16:4 (2009), 14–16

[14] L. N. Yasnitskiy, Introduction to Artificial Intelligence, Textbook for University Students, Academia Publ., Moscow, 2005, 176 pp.