Modeling of impurity influence on tunneling current in the contact of polymer with quantum dots and metal
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study an influence of an impurity on conductive properties of a polymer, for example polyacetylene. Based on the Hamiltonian for polymer electrons, we obtain the density of states, which is subsequently recalculated into a tunneling current between the polymer and the metal, as well as quantum dots. We analyze the effect of the impurity on the characteristic properties of the tunneling current.
Keywords: impurities, polyacetylene, tunneling current, conductivity, polymers.
@article{VVGUM_2017_20_5_a8,
     author = {N. N. Konobeeva},
     title = {Modeling of impurity influence on tunneling current in the contact of polymer with quantum dots and metal},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {89--93},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a8/}
}
TY  - JOUR
AU  - N. N. Konobeeva
TI  - Modeling of impurity influence on tunneling current in the contact of polymer with quantum dots and metal
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 89
EP  - 93
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a8/
LA  - ru
ID  - VVGUM_2017_20_5_a8
ER  - 
%0 Journal Article
%A N. N. Konobeeva
%T Modeling of impurity influence on tunneling current in the contact of polymer with quantum dots and metal
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 89-93
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a8/
%G ru
%F VVGUM_2017_20_5_a8
N. N. Konobeeva. Modeling of impurity influence on tunneling current in the contact of polymer with quantum dots and metal. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 89-93. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a8/

[1] L. S. Levitov , A. V. Shitov, Green’s Functions. Problems with Solutions, Fizmatlit Publ., Moscow, 2003, 392 pp.

[2] V. A. Osipov, V. K. Fedyanin, Polyacetelene and Two-Dimensional Models of Quantum Field Theory (Lectures for Young Scientists), Obyedinen. in-t yader. issledovaniy, Dubna, 1985, 81 pp.

[3] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene”, Nature, 438 (2005), 201–204 | DOI

[4] N. N. Konobeeva, M. B. Belonenko, “Conductivity of impurity graphene nanoribbons and gate electric field”, Modern Physics Letters B., 31 (2017), 1750340 | DOI | MR

[5] N. N. Konobeeva, M. B. Belonenko, “Sensitivity of graphene flakes and nanorings to impurities”, Physica B: Condensed Matte, 514 (2017), 51–53 | DOI

[6] I. Shtepliuk, N. M. Caffrey, T. Iakimov, V. Khranovskyy, I. A. Abrikosov, R. Yakimova, “On the interaction of toxic Heavy Metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene”, Scientific Reports, 7 (2017), 3934 | DOI

[7] D. G. Papageorgiou, I. A. Kinloch, R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites”, Progress in Materials Science, 90 (2017), 75–127 | DOI

[8] K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438 (2005), 197–200 | DOI