Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 76-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper estimates the possible errors in the modeling of atmospheric transfer of UV solar radiation by means of using modern data on cross sections of ozone and nitrogen dioxide absorption. The estimated data on atmosphere transparence, as well as direct and diffuse scattered fluxes of solar radiation at the Earth’s surface, registered by ground-based instruments with different spectral resolution, are compared. We analyze the spectroscopic errors in recovering the total content of atmospheric ozone at the measurement of atmospheric transparency with the use of SPM solar photometers, designed in the Siberian Branch of RAS. The calculations of UV atmosphere absorption are based on the data of ozone cross sections by Bass, Daumont, Molina and Serdyuchenko, and nitrogen dioxide by Bogumil, Burrows and JPL. It is shown that at the high spectrum resolution 0,02-0,06 nm, difference in the atmospheric transmission of ozone, calculated with the use of data on cross section absorption of ozone (Serdyuchenko and Bass), reaches 18,4 % for summer meteorological conditions of Volgograd and 22,3 % for Tomsk in the spectral interval near 305 nm, which is often used in recovering the total content of atmospheric ozone. We also calculated the UV radiation fluxes, measured by the SPM solar photometer for typical atmospheric conditions of Volgograd and Tomsk. In this case, the spectral resolution is lower (about 10 nm), and the difference in the atmospheric transmission is less than 2 % due to ozone absorption cross section data. The use of Molina data produces the difference up to 1,8 % in the total downward solar fluxes relatively to the data of Bass that can lead to an error in ozone total content retrieval less than 4 %. The use of different NO2 absorption cross section data does not influence the atmospheric transmission calculation in the 250-400 nm spectral interval. The discrepancies in the transmission do not exceed 0,9 %.
Keywords: absorption cross sections, ozone, nitrogen dioxide, radiation transfer, atmosphere.
@article{VVGUM_2017_20_5_a7,
     author = {T. Yu. Chesnokova and Yu. V. Voronina and A. V. Chentsov and K. M. Firsov and A. A. Razmolov},
     title = {Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {76--88},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a7/}
}
TY  - JOUR
AU  - T. Yu. Chesnokova
AU  - Yu. V. Voronina
AU  - A. V. Chentsov
AU  - K. M. Firsov
AU  - A. A. Razmolov
TI  - Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 76
EP  - 88
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a7/
LA  - ru
ID  - VVGUM_2017_20_5_a7
ER  - 
%0 Journal Article
%A T. Yu. Chesnokova
%A Yu. V. Voronina
%A A. V. Chentsov
%A K. M. Firsov
%A A. A. Razmolov
%T Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 76-88
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a7/
%G ru
%F VVGUM_2017_20_5_a7
T. Yu. Chesnokova; Yu. V. Voronina; A. V. Chentsov; K. M. Firsov; A. A. Razmolov. Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 76-88. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a7/

[1] S. Yu. Andreev, S. V. Afonin, T. V. Bedareva, The Study of Radiation Characteristics of Aerosol in the Asian Part of Russia, Izd-vo IOA SO RAN, Tomsk, 2012, 482 pp.

[2] V. S. Komarov, N. Ya. Lomakina, Statistical Models of the Boundary Layer of the Atmosphere of Western Siberia, IOA SO RAN, Tomsk, 2008, 222 pp.

[3] A. A. Nevzorov, V. D. Burlakov, S. I. Dolgiy, A. V. Nevzorov, O. A. Romanovskiy, O. V. Kharchenko, Yu. V. Gridnev, “Comparison of Lidar and Satellite Measurements of Vertical Ozone Profiles According to 2015 Data”, Optika atmosfery i okeana, 29:8 (2016), 703–708 | DOI

[4] T. Yu. Chesnokova, Yu. V. Voronina, “Vliyanie kachestva spektroskopicheskoi informatsii na modelirovanie niskhodyaschikh potokov solnechnogo izlucheniya v UF-diapazone”, Optika atmosfery i okeana, 21:7 (2008), 577–581

[5] J. Orphal, J. Staehelin, J. Tamminen et. al., “Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015”, Journal of Molecular Spectroscopy, 327 (2016), 105–121 | DOI

[6] J. Brion, A. Chakir, J. Charbonnier, D. Daumont, S. Parisse, J. Malicet, “Absorption spectra measurements for the ozone molecule in the 350–830 nm region”, Journal of Atmospheric Chemistry, 30 (1998), 291–299 | DOI

[7] G. P. Anderson, S. A. Clough, F. X. Kneizys, P. AFGL atmospheric constituent profiles (0–120 km), Massachusetts, 1986, 46 pp.

[8] J. P. Burrows, A. Dehn, B. Deters et al., “Atmospheric remote-sensing reference data from GOME: Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range”, Journal of Quantitative Spectroscopy and Radiative Transfer, 60 (1998), 1025–1031 | DOI

[9] A. M. Bass, R. J. Paur, “UV absorption cross-sections for ozone: the temperature dependence”, Journal of Photochemistry, 17 (1981), 141 | DOI

[10] ESRL: PSD: NCEP/NCAR Reanalysis at NOAA/ESRL PSD, https://www.esrl.noaa.gov/psd/data/reanalysis/

[11] K. Bogumil, J. Orphal, T. Homann et al., “Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region”, Journal of Photochemistry and Photobiology, 157 (A) (2003), 167–184 | DOI

[12] A. C. Vandaele, D. Hermans, P. C. Simon et al., “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10 000 cm-1 (238–1000 nm) at 220 K and 294 K”, Journal of Quantitative Spectroscopy and Radiative Transfer, 59 (1998), 171–184 | DOI

[13] L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range”, Journal of Geophysical Research, 91 (D):13 (1986), 14500–14508 | DOI

[14] NASA Goddard Ozone Air Quality, https://ozoneaq.gsfc.nasa.gov/data/ozone/

[15] K. Stamnes, S. -C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media”, Applied Optics, 27 (1988), 2502–2509 | DOI

[16] D. Daumont, J. Brion, J. Charbonnier, S. Malicet, “Ozone UV spectroscopy I: Absorption cross section at room temperature II: Absorption cross sections and temperature dependence”, Journal of Atmospheric Chemistry, 15 (1992), 145–155, 263–273 | DOI | DOI

[17] A. Serdyuchenko, V. Gorshelev, M. Weber, W. Chehade, J. P. Burrows, “High spectral resolution ozone absorption cross-sections. Part 2. Temperature dependence”, Atmospheric Measurement Techniques, 7 (2014), 625–636 | DOI

[18] V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, J. P. Burrows, “High spectral resolution ozone absorption cross-sections. Part 1. Measurements, data analysis and comparison with previous measurements around 293 K”, Atmospheric Measurement Techniques, 7 (2014), 609–624 | DOI

[19] B. Burkholder, S. P. Sander, J. Abbatt et al., JPL Publication 15–10, Jet Propulsion Laboratory, Pasadena. 2015, http://jpldataeval.jpl.nasa.gov