Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_5_a7, author = {T. Yu. Chesnokova and Yu. V. Voronina and A. V. Chentsov and K. M. Firsov and A. A. Razmolov}, title = {Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {76--88}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a7/} }
TY - JOUR AU - T. Yu. Chesnokova AU - Yu. V. Voronina AU - A. V. Chentsov AU - K. M. Firsov AU - A. A. Razmolov TI - Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 76 EP - 88 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a7/ LA - ru ID - VVGUM_2017_20_5_a7 ER -
%0 Journal Article %A T. Yu. Chesnokova %A Yu. V. Voronina %A A. V. Chentsov %A K. M. Firsov %A A. A. Razmolov %T Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 76-88 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a7/ %G ru %F VVGUM_2017_20_5_a7
T. Yu. Chesnokova; Yu. V. Voronina; A. V. Chentsov; K. M. Firsov; A. A. Razmolov. Calculation of solar radiation fluxes in the uv region with different cross sections of ozone and nitrogen dioxide absorption. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 76-88. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a7/
[1] S. Yu. Andreev, S. V. Afonin, T. V. Bedareva, The Study of Radiation Characteristics of Aerosol in the Asian Part of Russia, Izd-vo IOA SO RAN, Tomsk, 2012, 482 pp.
[2] V. S. Komarov, N. Ya. Lomakina, Statistical Models of the Boundary Layer of the Atmosphere of Western Siberia, IOA SO RAN, Tomsk, 2008, 222 pp.
[3] A. A. Nevzorov, V. D. Burlakov, S. I. Dolgiy, A. V. Nevzorov, O. A. Romanovskiy, O. V. Kharchenko, Yu. V. Gridnev, “Comparison of Lidar and Satellite Measurements of Vertical Ozone Profiles According to 2015 Data”, Optika atmosfery i okeana, 29:8 (2016), 703–708 | DOI
[4] T. Yu. Chesnokova, Yu. V. Voronina, “Vliyanie kachestva spektroskopicheskoi informatsii na modelirovanie niskhodyaschikh potokov solnechnogo izlucheniya v UF-diapazone”, Optika atmosfery i okeana, 21:7 (2008), 577–581
[5] J. Orphal, J. Staehelin, J. Tamminen et. al., “Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015”, Journal of Molecular Spectroscopy, 327 (2016), 105–121 | DOI
[6] J. Brion, A. Chakir, J. Charbonnier, D. Daumont, S. Parisse, J. Malicet, “Absorption spectra measurements for the ozone molecule in the 350–830 nm region”, Journal of Atmospheric Chemistry, 30 (1998), 291–299 | DOI
[7] G. P. Anderson, S. A. Clough, F. X. Kneizys, P. AFGL atmospheric constituent profiles (0–120 km), Massachusetts, 1986, 46 pp.
[8] J. P. Burrows, A. Dehn, B. Deters et al., “Atmospheric remote-sensing reference data from GOME: Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range”, Journal of Quantitative Spectroscopy and Radiative Transfer, 60 (1998), 1025–1031 | DOI
[9] A. M. Bass, R. J. Paur, “UV absorption cross-sections for ozone: the temperature dependence”, Journal of Photochemistry, 17 (1981), 141 | DOI
[10] ESRL: PSD: NCEP/NCAR Reanalysis at NOAA/ESRL PSD, https://www.esrl.noaa.gov/psd/data/reanalysis/
[11] K. Bogumil, J. Orphal, T. Homann et al., “Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region”, Journal of Photochemistry and Photobiology, 157 (A) (2003), 167–184 | DOI
[12] A. C. Vandaele, D. Hermans, P. C. Simon et al., “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10 000 cm-1 (238–1000 nm) at 220 K and 294 K”, Journal of Quantitative Spectroscopy and Radiative Transfer, 59 (1998), 171–184 | DOI
[13] L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range”, Journal of Geophysical Research, 91 (D):13 (1986), 14500–14508 | DOI
[14] NASA Goddard Ozone Air Quality, https://ozoneaq.gsfc.nasa.gov/data/ozone/
[15] K. Stamnes, S. -C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media”, Applied Optics, 27 (1988), 2502–2509 | DOI
[16] D. Daumont, J. Brion, J. Charbonnier, S. Malicet, “Ozone UV spectroscopy I: Absorption cross section at room temperature II: Absorption cross sections and temperature dependence”, Journal of Atmospheric Chemistry, 15 (1992), 145–155, 263–273 | DOI | DOI
[17] A. Serdyuchenko, V. Gorshelev, M. Weber, W. Chehade, J. P. Burrows, “High spectral resolution ozone absorption cross-sections. Part 2. Temperature dependence”, Atmospheric Measurement Techniques, 7 (2014), 625–636 | DOI
[18] V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, J. P. Burrows, “High spectral resolution ozone absorption cross-sections. Part 1. Measurements, data analysis and comparison with previous measurements around 293 K”, Atmospheric Measurement Techniques, 7 (2014), 609–624 | DOI
[19] B. Burkholder, S. P. Sander, J. Abbatt et al., JPL Publication 15–10, Jet Propulsion Laboratory, Pasadena. 2015, http://jpldataeval.jpl.nasa.gov